

Faculty of Engineering & Technology

Electromagnetic Waves 1

Information:

Course Code: COM 213 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Electrical Engineering

Instructor Information :				
Title	Name	Office hours		
Professor	Fawzy Ibrahim Abdelghany Hamama	2		
Professor	Fawzy Ibrahim Abdelghany Hamama	2		
Teaching Assistant	Shahd Ahmad Samir Ibrahim			
Teaching Assistant	Shahd Ahmad Samir Ibrahim			

Area Of Study:

Upon successful completion of the course, the student should be able to:

- 1. understand the fundamentals of electromagnetic theory.
- 2. know the main elements used in electric circuits.
- 3. apply different techniques of solving electrostatic problems.
- 4. apply different techniques of solving electrostatic problems.
- 5. know the relation between electric and magnetic and their sources.
- 6. recognize the relation between electromagnetic theory and circuit theory.
- 7. Share ideas and work in a team or a group.

Description:

different coordinate systems used in solving vector field problems. Coulomb's law- relation of electric field intensity with different charges .the electric flux density- Gauss's law and the divergence theorem. relation between the electric field and the force exerted on charges, and energy expended in this motion- the potential gradient and dipole moment . the application of the previous laws to some materials; conductors- semiconductors- and dielectrics. Boundary conditions. Definition of susceptibility and permittivity. Laplace and Poisson equations in the three coordinate systems, examples of their solutions. relations of steady magnetic field, its curl, and Stoke's theorem. time-varying fields and Maxwell's equations

Course ou	tcomes :		
a.Knowled	lge and Understanding: :		
1 -	Demonstrate knowledge and understanding of the fundamentals of electromagnetic theory.		
2 -	Illustrate and describe solving techniques of electromagnetic problems.		
3 -	Illustrate and describe theorems for solving electromagnetic problems.		
b.Intellect	ual Skills: :		
1 -	Express ideas in structural and mathematic terms so that quantities evaluation is facilitated.		
2 -	Ability to apply different alternative solutions.		
3 -	Decide and choose among different solution alternatives.		

4 -	Evaluate obtained results both individually or as a part of team.	
c.Professional and Practical Skills: :		
1 -	Applying electromagnetic theorems on practical problems and situations.	
d.General and Transferable Skills: :		
1 -	Write technical reports in accordance with standard scientific guidelines.	
2 -	Work in a self-directed manner.	
3 -	Analyze problems and use innovative thinking in their solution	

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Vector analysis: Vector algebra . Á/ector calculus . Á/ector integral theorems . Á Coordinate systems	10	6	4
Electrostatic fields in vacuum: Coulombos law . Ælectrostatic field . Æaussos law . Æotential . Á Poissonos and Laplaceos equations . Æboundary conditions on conductors . Ælectric dipole	10	6	4
Electrostatic fields in materials: Material polarization . ÁDisplacement vector . Boundary conditions . Á Capacitance . Ælectric energy	10	6	4
Stationary current field: Current flow . ÁConservation of charge . ÁKirchhofcs current law . Á Ohmcs law . Ælectrical resistance . ÆBoundary conditions . ÁDuality . Á Joulecs law	5	3	2
Stationary magnetic fields in vacuum: Amperecs law of force . ÁMagnetic induction field . ÁBiot-Savart law . Á magnetic vector potential . ÁGaussofaw for magnetic field . ÁAmperecs circuital law . ÁMagnetic dipole	10	6	4
Stationary magnetic fields in materials: Magnetization . ÁMagnetic field intensity . ÁBoundary conditions . Á Magnetic circuits	10	6	4
Quasi-stationary Electromagnetic fields: Faradays law of induction . Ánduced electric field due to motion . Á Inductance . ÁMagnetic energy	10	6	4
Time dependent electromagnetic fields: Maxwellos equations . Poynting theorem	5	3	2

Teaching And Learning Methodologies :	
Lectures	
Tutorials	

Course Assessment:				
Methods of assessment	Relative weight %	Week No	Assess What	
Attendance	10.00	14		
Final-term	40.00	15	to assess the comprehensive understanding of the scientific background of the course, to assess the ability of problem solving with different techniques studied	
First Mid-Term Exam	15.00	7	to assess the skills of problem solving, understanding of related topics.	
Quizzes and Assignments	10.00	14	to assess the ability of applying electromagnetic laws in solving and understanding of different technical issues.	
Second Mid-Term Exam	15.00	11	to assess the skills of problem solving, understanding of related topics.	

Course Notes:

No course notes are required

Recommended books:

- 1) F. T. Ulaby, #Fundamentals of Applied Electromagnetics, #Prentice-Hall, 1997
- 2) R. Plonsey and R. E. Collin, %Brinciples and Applications of Electromagnetic Fields, #McGraw-Hill, 1961.