

Faculty of Computers and Information Technology

Computer Architecture

Information:

Course Code: CS312 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Computer Science

Instructor Information:		
Title	Name	Office hours
Associate Professor	Khaled Ahmed Mohamed Elshafey	6
Assistant Lecturer	Salma Radwan Hassan Abdelhamid	3
Teaching Assistant	Nada Emad Abdelsalam Hussien	

Area Of Study:

Develop and evaluate basic computer and accumulator logic.

Use all available principles and practices used in the design and analysis of a digital computer system.

Show a complete understanding of micro-programs and control unit.

Understand knowledge that enhances skills in parallel processing.

Compare and evaluate different functional units (bus system, memory unit, central processing unit, and input/output), and evaluate the techniques that control memory and address sequencing.

Description:

Sequential logic: flip-flops, registers. Microprocessors, computer instructions, interrupts, design of basic computer, control unit design, micro programming, parallel processing.

a.Knowledge and Understanding: :		
1 -	Discuss the fundamental	ĺ

- 1 Discuss the fundamental concepts of computer architecture.
- 2 Explain the principles and techniques of transferring data in computer system and the required computer instructions.
- 3 Outline the main types of interrupts showing the principles of memory control and parallel processing.

b.Intellectual Skills::

- 1 Analyze different problems in designing a basic computer.
- 2 Propose a set of alternative solutions for bus system.
- 3 Select appropriate methodologies and techniques for sequential and parallel processing.

c.Professional and Practical Skills: :

- 1 Apply effective information to implement arithmetic and shift micro-operations.
- 2 Deploy effective supporting tools to apply memory reference instructions to manage real memory.
- 3 Create technical reports according to professional standards.

d.General and Transferable Skills: :

- 1 Work on a team for the development of a requirements document.
- 2 Apply communications skills in presentation and report writing of requirements engineering deliverables.

ABET Course outcomes:

- 1 Analyze different problems in designing a basic computer.
- 2 Select appropriate methodologies and techniques for sequential and parallel processing
- 3 Use available principles and practices used in the analysis and design of a digital computer system.
- 4 Demonstrate understanding of micro-programmed control unit.
- 5 Compare and evaluate different functional units (bus system, memory unit, central processing unit, and input/output).

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Latches, Flip Flops	4	2	2
Registers, Counters	4	2	2
Register Transfer Language, Bus and Memory Transfer	4	2	2
Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations	4	2	2
Instruction Codes, Computer Registers	4	2	2
Computer Instructions, Timing Cycle	4	2	2
Instruction Cycle, Memory Reference Instructions	4	2	2
Input-Output and Interrupt	4	2	2
Mid-Term Exam	2		
Design of basic computer, Design of accumulator logic	4	2	2
Control memory, Address sequencing	4	2	2
Micro-program, Control unit	4	2	2
Parallel Processing, Memory Hierarchy	4	2	2
Final Exam	2		

Teaching And Learning Methodologies:

Interactive Lectures including Discussions

Tutorials

Practical Lab Sessions

Self-Study (Project / Reading Materials / Online Material / Presentations)

Problem Solving

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignments	10.00	4	
Final Exam	40.00	14	

Midterm Exam (s)	20.00	9	
Quizzes	20.00	5	
Team Work Projects	10.00		

Course Notes:

An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle)

Recommended books:

Mostafa Abd-El-Barr, Hesham El-Rewini, Fundamentals of computer organization and architecture, John Wiley & Sons, latest edition.