

Faculty of Computers & Information Technology

Theory of Computations

Information:

Course Code: CSC 416 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Computer Science

Instructor Information:					
Title	Name	Office hours			
Associate Professor	Osama Fathy Saleh Hegazy	3			
Associate Professor	Osama Fathy Saleh Hegazy	3			
Teaching Assistant	Rahmatallah Hossam Farouk Hassan Mohamed AlSofany				
Teaching Assistant	YASMIN AMR AHMED ANWAR ALI BADR	5			
Teaching Assistant	YASMIN AMR AHMED ANWAR ALI BADR	5			

Area Of Study:

This course deals with the theoretical foundations of computing, including abstract models of computing machines, the grammars those machines recognize, and the corresponding classes of languages. Topics include church's thesis; grammars, the m-recursive functions, and tuning computability of the m-recursive functions, the incompatibility: the halting problem, tuning innumerability, tuning acceptability, and tuning decidability, unsolvable problems about tuning machines and m-recursive functions, computational complexly: time – bounded tuning machines, rate of growth of functions, up – completeness, the complexity hierarchy, the prepositional calculus: syntax, truth – assignment, validity and satisfy, and equivalence and normal forms compactness, Recent correlated software packages should be used through labs.

Description:

Course outcomes:

This course deals with the theoretical foundations of computing, including abstract models of computing machines, the grammars those machines recognize, and the corresponding classes of languages. Topics include church's thesis; grammars, the m-recursive functions, and tuning computability of the m-recursive functions, the incompatibility: the halting problem, tuning innumerability, tuning acceptability, and tuning decidability, unsolvable problems about tuning machines and m-recursive functions, computational complexly: time – bounded tuning machines, rate of growth of functions, up – completeness, the complexity hierarchy, the prepositional calculus: syntax, truth – assignment, validity and satisfy, and equivalence and normal forms compactness, Recent correlated software packages should be used through labs

a.Knowledge and Understanding: : 1 - Know the theoretical foundations of computing. 2 - Understand advanced techniques for formal languages.

- 2 Ondorotana advanoca teoriniquee for formal language
- 3 Understand Grammars those machines recognize,
- 4 Read, write, and manipulate an abstract specification describing the requirements of a computer system,

5 -	Apply various proof methods of computing and corresponding classes of languages.				
6 -	Understand the abstract models of the process of computation such as Turing Machines, its variations, and Post Machines, and including abstract models of computing machines				
b.Intellectu	ual Skills: :				
1 -	Explain and illustrate by means of examples the terms finite, non finite, and pushdown automata, and context free grammars, un-decidability, equivalence and decision procedures				
2 -	Describe and compare the main models of computing				
3 -	Analyze the complexity of simple computing programs				
4 -	Explain the use of formal systems in computers				
5 -	Good students will be able to formally analyze simple properties of on topics of formal specifications through proof.				
c.Profession	onal and Practical Skills: :				
1 -	1 - Approach the advanced formal languages with confidence				
2 -	Understand new advanced formal languages				
d.General	and Transferable Skills: :				
1 -	Deploy communication skills				
2 -	Deploy research skills				
3 -	To work to tight deadlines				
4 -	Justify students design decisions in a written document				
5 -	Work more easily within a team to achieve an objective				

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Background to Theory of Formal Languages	4	2	2
Introduction to Formal Languages	4	2	2
Regular Expressions	4	2	2
Finite Automata	4	2	2
Non Deterministic Finite Automata	4	2	2
Midterm Exam I	4	2	2
Transition Graphs	4	2	2
Context-Free Grammars	4	2	2
Pushdown Automata	4	2	2
Equivalence of Computing Paradigms	4	2	2
Turing Machines	4	2	2
Midterm Exam II	4	2	2
Post Machines	4	2	2
Computers	4	2	2
Revision	4	2	2
Final Exam	4	2	2

Teaching And Learning Methodologies :		
Lectures		
Exercises		
Projects		

Course Assessment :							
Methods of assessment	Relative weight %	Week No	Assess What				
Final Exam	40.00	16					
Midterm I	15.00	6					
Midterm II	15.00	12					
Project	15.00	4					
Quizes & Assignments	15.00	2					