

Faculty of Engineering & Technology

Electronic Circuits

Information:

Course Code: ELE 364 Level: Undergraduate Course Hours: 4.00- Hours

Department : Department of Electrical Engineering

Instructor Information :				
Title	Name	Office hours		
Associate Professor	Mohamed Hassan Mohamed Elmahlawy	2		
Lecturer	AHMED SAEED ABDELSAMEA SAYED	10		
Lecturer	MOHAMED MOUSA SAYED EMAM AHMED	3		
Assistant Lecturer	Mostafa Mohamed Salaheldin Abdelkhalek	5		
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA			
Teaching Assistant	Hamdy Sherif Hamdy Amin Elshehaby			

Area Of Study:

The Course aims to provide:

- 1- Transistor small signal models: Ämodel , T-model.
- 2- Analysis of audio frequency (AF) amplifiers: RC-coupled, and frequency response.
- 3- Power amplifiers: Class-A, Push-pull operation (Class-A, Class-B, Class C).
- 4- Operational amplifiers (OPAMPs): difference amplifier, OPAMP specifications and frequency characteristics, OPAMP applications.
- 5- Inverting, non-inverting, adder, subtractor, integrator, differentiator. Feedback amplifiers (FB).
- 6- FB concept, general characteristics of negative FB amplifiers, input and output impedances
- 7- Oscillators: concept of stability and oscillations, OPAMP oscillators.
- 8- Multivibrators (MVs): bistable MVs, monostable and astable MVs.
- 9- Waveform shaping circuits and the 555 timer.

Description:

Transistor small signal mod- model, Analysis of audio frequency (AF) amplifiers: RC-coupled, high frequency model and frequency response, AF power amplifiers: Class-A, Push-pull operation (Class-A, Class-B, Class AB), Feedback amplifiers (FB): FB concept, stability, general characteristics of negative FB amplifiers, input and output impedances with FB, difference amplifier Operational amplifiers (OPAMPs):, OPAMP specifications and frequency characteristics, OPAMP applications: inverting, non-inverting, adder, subtracter, integrator, differentiator, Oscillators: concept of stability and oscillations, OPAMP oscillators (rectangular, sinusoidal, Wien bridge, phase shift, and tuned circuits). Multivibrators (MVs): bistable MVs, triggering, schmitt trigger, monostable and astable MVs, wave shaping circuits and the 555 timer

Course outcomes:

a.Knowledge and Understanding: :

a.Knowledge and Onderstanding				
1 -	understand the fundamentals of the Audio and Power	transistor Amplifiers .		
2 -	Operational amplifiers (OPAMPs): specifications , frequency	characteristics, and applications.		

3 -	Inverting, non-inverting, adder, integrator, differentiator. and feedback amplifiers (FB).				
4 -	OPAMP oscillators				
5 -	Multivibrators (MVs): bistable MVs, monostable and astable MVs.				
6 -	development of the practical skills and testing of the electronic circuits				
b.Intellectu	ual Skills: :				
1 -	Ability to apply different alternative solutions.				
2 -	Ability to apply different solution alternatives using different approximation models.				
3 -	Analysis of the obtained results both individually or as a part of a team				
c.Professi	onal and Practical Skills: :				
1 -	Testing and measurements of the characteristics of the Transistor and Operational Amplifier circuits				
2 -	Connections and Measurements of the input and output signal levels and waveforms of the transistor and Operational Amplifier Circuits				
3 -	Fault detection and repair of the OP Amplifier and transistor circuits.				
d.General	and Transferable Skills: :				
1 -	Ability to write technical reports.				
2 -	Ability to work in a self-directed manner.				
3 -	Can work coherently as a part of a team.				
4 -	Can find innovative solutions				

Course Topic And Contents :				
Topic	No. of hours	Lecture	Tutorial / Practical	
Transistor small signal models: Ëmodel , T-model. RC-coupled audio frequency (AF) amplifiers.	6	3	3	
Power amplifiers: Class-A, Push-pull operation, (Class-A, Class-B, Class C).	12	6	6	
Operational amplifiers (OPAMPs) difference amplifier, OPAMP applications.	12	6	6	
Inverting, non-inverting, adder, subtractor, integrator, differentiator. Feedback amplifiers (FB).	12	6	6	
FB concept, general characteristics of negative FB amplifiers, input and output impedances	6	3	3	
Oscillators: concept of stability and oscillations, OPAMP oscillators. Waveform shaping circuits.	18	9	9	
Multivibrators (MVs): bistable MVs, monostable and astable MVs.	12	6	6	

Teaching And Learning Methodologies : Lectures Tutorials Laboratories

Course Assessment:				
Methods of assessment	Relative weight %	Week No	Assess What	
Attendance ,Lab.	5.00	10	to assess the ability of implementing simple electronic circuits and measure the different characteristics.	
Final-term	40.00	15	to assess the comprehensive understanding of the scientific background of the course, to assess the ability of problem solving.	
First Mid-Term Exam	25.00	6	to assess the skills of problem solving, understanding of the course topics.	
Quizzes and Assignments	5.00	10		
Second Mid-Term Exam	25.00	10	to assess the skills of problem solving, understanding of the course topics.	

Course Notes:

No course notes are required

Recommended books:

"Electronic Principles", 7th edition, A. Malvino. ∰Electronic Circuit Analysis and Design+É2nd ed., Neamen D.