

Faculty of Engineering & Technology

Fluid Mechanics

Information:

Course Code: MPR 252 Level: Undergraduate Course Hours: 4.00- Hours

Department : Department of Mechanical Engineering

Area Of Study:

By the end of the course the students will be able to:

- 1) Demonstrate knowledge of Types and characteristics of flow, fluid statics, kinematics of flows and basics of fluid dynamics.
- 2) Define and solve problems in fluid dynamics in various engineering applications.
- 3) Predict performing of basic applications of fluid mechanics systems in modern life.

Description:

Basic properties of fluids and fundamental concepts, Statics of fluids, Hydrostatic forces and buoyancy, Fluid kinematics, Characterization of fluid flow, Basic equations: conservation of mass, momentum and energy, Bernoulli's equation, Energy Equation Applications. Momentum equation. Laminar and Turbulent flow in ducts and pipes and their External flow; Lift and Drag forces, Basics of dimensional analysis and dynamic similarity.

Course outcomes:

a. Knowledge and Understanding: :

- 1 Define fluid properties, stresses in fluids at rest and in motion and types of fluid flows.
- 2 Identify the governing equations of fluid flow: continuity, energy and momentum equations from principles of mass, energy and momentum conservation.
- 3 Identify the terms of Bernoulli's equation, include major and minor losses and draw the energy and the hydraulic gradient lines for flow systems.
- 4 Explain velocity and flow measuring devices, boundary layers, separation, friction, drag, lift, circulation and occurrence of the problem of cavitation.

b.Intellectual Skills::

- 1 Analyze Bernoulli's equation and energy equation in flow problems.
- 2 Predict friction losses in pipes and ducts
- 3 Calculate drag and lift forces for different flow conditions.

c.Professional and Practical Skills: :

- 1 Use appropriate fluid measurement with lab equipment.
- 2 Perform experiments in the lab within proper technical, safety and ethical framework.

d.General and Transferable Skills::

- 1 Write reports in accordance with the standard scientific guidelines
- 2 Present reports, discuss results and defend his/her ideas.

3 - Work coherently and successfully as a part of a team in assignments.

Course Topic And Contents :	Course Topic And Contents :				
Торіс	No. of hours	Lecture	Tutorial / Practical		
Introduction and Basic Concepts History of Fluid Mechanics, No-slip condition, Classification of fluid flows.	6	3	3		
Fluid Properties, Vapor pressure and Cavitation, Compressibility and speed of sound, Viscosity, Surface tension and capillary effect.	6	3	3		
Pressure and Fluid Statics Hydrostatic Forces on Submerged Plane Surfaces, Hydrostatic Forces on Submerged Curved Surfaces, Buoyancy and Stability.	9	6	3		
Fluid Kinematics Lagrangian and Eulerian Descriptions, Flow Patterns and Flow Visualization, Vorticity and Rotationality.	9	3	6		
Mass, Bernoulli, and Energy Equations Mechanical Energy and Efficiency, The Bernoulli Equation, General Energy Equation, Energy Analysis of Steady Flows.	24	12	12		
Fluid Momentum Newton s Laws, The Linear Momentum Equation.	6	3	3		
Internal Flow Introduction, Laminar and Turbulent Flows, The Entrance Region, Laminar Flow in Pipes, Turbulent Flow in Pipes, Minor Losses.	9	6	3		
Internal Flow Piping Networks and Pump Selection, Flow rate and velocity measurement.	9	3	6		
External Flow: Drag and Lift Introduction, Drag and Lift, Friction and Pressure Drag, Drag Coefficients of Common Geometries, Parallel Flow Over Flat Plates, Flow Over Cylinders and Spheres, Lift.	12	6	6		

Teaching And Learning Methodologies:	
Interactive Lecture	
Problem based learning	
Discussion	
Experimental learning	
Project based learning	
Search	

Course Assessment :					
Methods of assessment	Relative weight %	Week No	Assess What		
1st -Mid-term evaluation	25.00	6			
2 nd -Mid-term evaluation	25.00	11			
Final examination	40.00	16			
General Performance	10.00	14			

Recommended books:

Fluid Mechanics 6E , By Douglas, Gassiorik and Swaffield , Publisher: Pearson,new York, USA $\,$

Streeter, V.L., Wylie, E, B., and Bedford, K. W., "Fluid Mechanics "9th Edition, McGraw Hill, New York, USA