PHARMACEUTICAL CHEMISTRY DEPARTMENT

Courses of Pharmaceutical Chemistry Department

No.	Course Title	Course Code
1	Pharmaceutical Analytical Chemistry I	PHC 111
2	Pharmaceutical Analytical Chemistry II	PHC 122
3	Instrumental Analysis	PHC 213
4	Pharmaceutical Organic Chemistry I	PHC 114
5	Pharmaceutical Organic Chemistry II	PHC 125
6	Structural Elucidation of Organic Compounds	PHC 216
7	Medicinal Chemistry I	PHC 317
8	Medicinal Chemistry II	PHC 328
9	Drug Design and Drug Development	PHC 429

Elective Courses:

No.	Course Title	Course Code
1	Analysis of Food and Cosmetics	PHC 601
2	Chemistry of Medicinal Heterocycles	PHC 602

Pharmaceutical Analytical Chemistry-I (PHC 111)

Program (s) on which the course is given: Department offering the program: Department offering the course: Academic year: Approval Date:

Bachelor of Pharmacy All Faculty Departments Department of Pharmaceutical Chemistry 2014/2015 September 2014

A. Basic Information

Course Title: Analytical Chemistry-I	Course Code: PHC 111			
Prerequisites: None				
Students' Level/Semester:	First Year /1 st Semester			
Credit hours:	3 (2+1)			
Actual teaching hours per week:				
Lectures: 2 hr/week Practical: 2 h	nr/week Tutorial: N/A	Total: 4 hr/week		

B. Professional Information

1. Overall Aim of Course

This course aims to provide the student with good knowledge to study qualitative inorganic analysis and quantitative analysis of chemical substances through gravimetric analysis that would enable the student to work upon graduation in the different related fields of analysis (forensic chemistry, water analysis, environmental analysis for detection of pollutants,.....etc).

2. Intended Learning Outcomes (ILOs)

By the end of this course student should be able to:

a- Knowledge and Understanding:

a1. Identify different types of chemical equations (molecular and ionic equations).

a2. Recognize different types of chemical reactions (acid-base, precipitation, complexation, displacement and redox reactions).

a3. Recognize suitable methods for gravimetric determination of inorganic compounds

b- Intellectual Skills:

- b1. Predict either the reactions will give positive or negative results.
- b2. Select the suitable scheme for the systematic examination of cations as well as anions either in simple mixtures or in special admixtures producing difficulties.
- b3. Design certain schemes for the analysis of cations and anions.

c- Professional and Practical Skills:

c1. Apply the given schemes for identification of anions and cations.

- c2. Apply gravimetric analysis through precipitation of cation or anion in pure form.
- c3. Analyze qualitatively chemical substance through identification of its acid radical (anion) and its basic radical (cation).
- c4. Identify anions and cations in their mixtures.
- c5. Analyze quantitatively chemical substances through gravimetric analysis [through precipitation of either its cation or its anion, purification (washing), filtration, drying and/or ignition and finally weighing].

d- General and Transferable Skills:

- d1. Argue about the choice of a certain scheme to analyze given mixtures concerning the topics of the course.
- d2. Interact efficiently with others.
- d3. Work effectively in a team.

3. Contents

Teaching	Торіс	No. of	Lecture	Practical
Week	Торіс	hours	Lecture	Tacucai
	- Introduction.		2	
One	- Carbonate and Bicarbonate	4		2
	- Introduction.	4	2	
Тwo	- Sulphur group (Sulphide,Sulphite Thiosulphate and Sulphate)			2
	-Carbonate group.	4	2	
T 1	-Sulphur group			
Three	- Halides (Cl ⁻ , Br ⁻ and I-) Nitrate			2
	and Nitrite.			
	-Halides group.	4	2	
	-Cyanogen group			
	Cyanogen group (CNS-,			1.5
Four	Ferrocyanide and Ferricyanide)			
	$(PO_4^{3-}, AsO_4^{3-} and AsO_3^{3-}) +$			
	First Midterm Exam.			0.5
				0.5
	-Phosphate group.	4	2	
Five	-Nitrogen containing anion group			
	- Revision			2

	-Group-I cations.	4	2	
Six	-Group-II cations			
	-First practical exam + Quiz 1			2
	-Group-III cations.	4	2	
Seven	-Group-IV cations.			
	- Cations : Group I			2
Eight	Second Midterm Exam			
	- Group -V cations	4	2	
Nine	-Group II			2
	Group-VI cations.	4	2	
Ten	-Group III and IV			2
Eleven	- Gravimetric analysis.	4	2	
Lieven	- Second Practical Exam + Quiz 2			2
Twelve	- Gravimetric analysis.	2	2	
Thirteen	Revision	2	2	
Total no. of hours		44	24	20
Fourteen	University Elective Final Exams			
Fifteen				
Sixteen	- Final Exams of Faculty			

4. Teaching and Learning Methods

- **4.1.** Data show and computer in lectures.
- **4.2.** Practical work.
- **4.3.** Group Discussion.
- 4.4. Data Analysis.
- **4.5.** Problem solving.
- **4.6.** Assignments.
- **4.7.** Power point presentations.
- **4.8.** Demonstration videos.
- **4.9.** Self-learning by discussion of projects prepared by students.
- **4.10.** Office hours.

5. Student Assessment Methods

- **5.1.** Written Exams to assess knowledge and understanding as well as intellectual skills.
- 5.2. Practical Exam to assess professional and practical skills.
- 5.3. Practical Quizzes to assess knowledge and understanding of practical part.
- 5.4. Oral exam to assess all skills including general and transferable skills.
- **5.5.** Class work to assess all types of skills.

Assessment Schedule

Assessment 1 Practical exam 1 + Quiz	z 1 Week 6
Assessment 2 Practical exam 2 + Qui	z 2 Week 11
Assessment 3 First Midterm exam.	Week 4
Assessment 4 Second midterm exam.	Week 8
Assessment 5 Final Written exam.	Week 15/16
Assessment 6 Oral exam	Week 15/16
Assessment 7 Class work (Lab perform	mance and participation in lectures)
During the semester	

Weighting of Assessments

1st Mid-Term Examination	5 %
2nd Mid-Term Examination	15 %
Final-Term Examination	30 %
Oral Examination	10 %
Class Work (Lab performance + Discussions)	10 %
Practical	30 %
Practical Examination 25 %	
Quiz 5 %	
Total	100 %

6. List of References

6.1. Course Notes

Staff lectures handouts are **uploaded to the Moodle**. Lab manual is **given to each student**.

6.2. Essential Books (Text Books)

G. Svehla , Vogel's Qualitative Inorganic Analysis, Addison Wesley,Longman Ltd, 6th Edition, 2000

6.3. Recommended Books

Catherine Housecroft and Alan G. Sharpe, Inorganic Chemistry (4th Edition, 2012

6.4. Periodicals, Websites,etc http://www.wikipedia.org/

7. Facilities Required for Teaching and Learning

- Lecture halls.
- Laboratories.
- Personal Computer (available for each staff member).
- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment (glass ware, tubes, flasks and beakers, flames, balanceetc).

Course Coordinator: Prof. Dr. Mohammad Abdelkawy

Head of Department: Prof. Dr. Ramzia Ismail El-Bagary

Department Approval Date: September 2014

Pharmaceutical Analytical Chemistry-II (PHC 122)

Program (s) on which the course is Department offering the program: Department offering the course: Academic year: Approval Date:	All departm Department 2014/2015	All departments Department of Pharmaceutical Chemistry		
A. Basic Information				
Course Title: Analytical Chemis	try-II Course Coo	de: PHC 122		
Prerequisites: -				
Students' Level/Semester:	First Year/ Seco	ond Semester		
Credit hours:	4 (3+1)			
Actual teaching hours per week:				
Lectures: 3 hr/week	Practical: 2 hr/week	Tutorial: N/A	Total: 5 hr/week	

B. Professional Information

1. Overall Aim of Course

The aim of this course is to provide the students with a quantitative sense in chemical analysis as well as a deep knowledge of acid –base (aqueous & non- aqueous) titrations, precipitemetry, complexometry and redox reactions.

2. Intended Learning Outcomes (ILOs)

By the end of the course, the student should be able to:

a- Knowledge and Understanding:

a1. State different quantitative methods of chemical analysis.

a2. Identify methods of analysis of various pharmaceutical organic and inorganic substances and drugs.

- **a3**. Recognize theories of acid & base.
- **a4.** Calculate pH of acids, bases, salts and buffers.
- a5. State different types of titration (Direct, Indirect and Back titration).
- **a6**. Identify biphasic titration and formal titration.
- a7. Classify types of solvents in non-aqueous titration.
- **a8.** Identify non-aqueous titration for analysis of weak acids & weak bases.
- **a9.** Enumerate factors affecting stability of the complex.
- **a10.** Identify complexing agents e.g:EDTA.
- **a11.** Detect stability constant of complex as well as end points.

a12. State types of indicators that can be used in (acid-base titration, complexometry, Redox Reaction).

a13. Recognize types of titration (Complexometric titration, Direct titration, Back titration, Replacment titration, Cyanometry, Mercurimetry)

a14. Differentiate between different methods of preceptimetric reactions (Lebig's – Denig's – Mohr's – Volhared – Fajans).

a15. Calculate the equivalent weight in Redox by different methods.

a16. Mention Nernest's equation and factors affecting oxidation potential.

b- Intellectual Skills:

b1. Differentiate between accurate and rough measures correctly.

b2. Categorize compounds according to their acidic/basic nature

in aqueous and non-aqueous medium.

b3. Detect the appropriate method used to determine quantitatively compounds forming precipitate(s).

b4. Select the appropriate method to determine quantitatively Metals forming Complex.

b5. Choose methods to determine oxidants and reductants compounds.

b6. Suggest the suitable analytical methods for different classes of pharmaceutical compounds.

b7. Create new methods for analysis of mixtures of different substance.

c- Professional and Practical Skills:

c1. Prepare different standard solutions.

c2. Standardize solutions by direct or indirect methods

c3. Use the suitable standard for determination of a particular chemical substance.

c4. Use Redox reaction for analysis of oxidizing and reducing substances.

c5. Apply methods of analysis for individual compounds or their mixtures.

c6. Determine quantitatively compounds forming precipitate(s).

c7. Determine quantitatively Metals forming Complex.

d- General and Transferable Skills:

d1. Collect the gained experiences in certain pharmaceutical activities.

d2. Use different resources to work with minimal guidance.

d3. Work effectively in groups.

d4. Communicate effectively with others.

3. Contents

Teaching Weeks	Торіс	No. of hours	Lecture	Practical
	Acid-base (aqueous titration)	5	3	
One	Preparation and standardization of			2
	0.1N HCl			
	Acid-base (aqueous titration)	5	3	
Two	Acid base titration: Determination			2
1.00	of mixture of Hydrochloric acid /			
	Acetic acid			
	Acid-base (aqueous titration)	5	3	
Three	Determination of mixture of Borax			2
	/ Boric acid			
	Acid-base (aqueous titration)	5	3	1.5
	Determination of mixture of			0.5
Four	Calcium / Magnesium and			
	Determination of Nickel			
	First Midterm Exam			
	Acid –base (non aqueous titration)	5	3	
Five	Revision of acid-base and			2
	complexometry			
Six	Redox Reactions	5	3	
~	First Practical Exam.			2
	Redox Reactions	5	3	
	Determination of Chloride			2
Seven	concentration by Mohr's method			
~ ~ ~ ~ ~ ~	and Determination of			
	Chloride/Iodide mixture by Fajan's			
	methods			
Eight	Second Midterm Exam	_	-	-
	Redox Reactions	5	3	
	Determination of the concentration			2
Nine	of Sodium Oxalate and Ferrous			~
1 (IIIC	Sulphate			
	Complexometery	5	3	
	Revision		-	2
Ten	Redox titration and Acid base			-
	titration			
		I	I	

Element	Complexometery	5	3	
Eleven	Second Practical Exam.			2
Twelve	Precipitimetry	3	3	
I welve				-
Thirteen	Precipitimetry	3	3	
1 mil teen				-
Total No.		56	36	20
of hours				
Fourteen				
	University Elective Final Exams			
Fifteen				
Sixteen	Final Exams			
~				

4. Teaching and Learning Methods

- **4.1.** Data show and computer in lectures.
- 4.2. Practical work.
- 4.3. Group Discussion.
- 4.4. Data Analysis.
- 4.5. Problem solving.
- 4.6. Assignments.
- **4.7.** Power point presentations.
- **4.8.** Demonstration videos.
- 4.9. Self-learning by discussion of projects prepared by students.
- **4.10.** Office hours

5. Student Assessment Methods

- 5.1. Written Exams to assess knowledge and understanding as well as intellectual skills.
- **5.2.** Practical Exam to assess professional and practical skills.
- **5.3.** Assignments to assess general and transferable skills.
- **5.4.** Oral exam to assess all skills including general and transferable skills.
- 5.5. Class work to assess all types of skills.

Assessment Schedule

Assessment 1 Practical exam 1	Week 6
Assessment 2 Practical exam 2	Week 11
Assessment 3 First Midterm exam	Week 4
Assessment 4 Second midterm exam	Week 8
Assessment 5 Final Written exam	Week 15/16
Assessment 6 Oral exam	Week 15/16
Assessment 7 Class work (Lab perfor	mance and participation in lectures) During the
semester	

Weighting of Assessments

1st Mid-Term Examination		5	%
2nd Mid-Term Examination		15	%
Final-Term Examination		30	%
Oral Examination		10	%
Practical Examination		30	%
-Practical	25 %		
-Activity (Assignment)	5 %		
Class Work		10	%
Total		100	%

6. List of References

6.1. Course Notes

Staff lectures handouts **uploaded to the Moodle.** Lab manual **given to each student**

6.2. Essential Books (Text Books)

G. Svehla , Vogel's Qualitative Inorganic Analysis, Addison Wesley,Longman Ltd, 6th Edition, 2000

6.3. Recommended Books

Gary D. Christian, Purnendu K. Dasgupta, Kevin A. Schug, Analytical Chemistry, 7th Edition November 2013, ©2014.

6.4. Periodicals, Websites

Periodical Scientific Journals:

Analytical Chemistry Acta Pharm

Websites: www.Sciencedirect.com www.pubmed.com

7. Facilities Required for Teaching and Learning

- Lecture halls.
- Laboratories.
- Personal Computer (available for each staff member).
- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment (glass ware, pipette and burette, flasks and beakers, flames, electric balanceetc).

Course Coordinator: Amr Mohamed Badawey

Head of Department: Prof. Dr. Ramzya Elbagary

Department Approval Date: September 2014

Tutorial: N/A **Total:** 5/week

Instrumental Analysis (PHC213)

Program (s) on which the course is given: Department offering the program: Department offering the course: Academic year:	Bachelor of Pharmacy All Faculty Departments Pharmaceutical Chemistry
Approval Date:	September 2014
A. Basic Information	
Course Title: Instrumental Analysis	Course Code : PHC213
Prerequisites: Pharmaceutical Analytical C	
Students' Level/Semester:	Second Level/ 3 rd Semester
Credit hours:	4(3+1)

Practical: 2/week

B. Professional Information

Actual teaching hours per week:

1. Overall Aim of Course

Lectures: 3/week

The aim of this course is to provide the students with quantitative analysis of chemical substances through instrumental analysis education that would enable the student to work upon graduation in the different related fields of analysis and research (pharmaceutical compounds, water analysis, environmental analysis for detection of pollutants,.....etc) in a communicative team work.

2. Intended Learning Outcomes (ILOs)

By the end of the course, the student should be able to:

a- Knowledge and Understanding

a1 .Define the theories of instrumental methods of spectroscopic analysis (molecular absorption Spectrophotometry)

a2. Identify the theories of instrumental methods of spectroscopic analysis [molecular emission (Flourimetry)].

a3. Discuss the theories of instrumental methods of spectroscopic analysis [Flame spectroscopy (atomic absorption)].

a4. Recognize the theories of instrumental methods of spectroscopic analysis [Flame spectroscopy (atomic emission)]

a5. Illustrate the theories of Electrochemistry (Potentiometry).

a6. List the theories of Electrochemistry (Conductometry).

a7. Enumerate the theories of Electrochemistry (Polarograghy analysis).

- a8. Recognize chromatomatography.
- a9. Discuss the separation techniques [columnar method e.g.: HPLC, GC, Planar technique e.g.: TLC].

b- Intellectual Skills:

- b1. Choose suitable instrumental methods of analysis of the substance to be analyzed (Spectrophotometry Electrochemical, Potentiometry, Conductometry, and Polarography).
- b2. Detect certain classes of pharmaceutical compounds.

c- Professional and Practical Skills:

- c1. Use instruments in analytical laboratories.
- c2. Detect the quality of analyzed sample.
- c3. Write full report justifying his judgment.
- c4. Dispose hazardous materials according to safety measures.
- c5. Apply safety measures in practice.
- c6. Analyze different mixtures concerning the topics of the course in a systematic way

d- General and Transferable Skills:

- d1. Interact efficiently with others.
- d2. Work effectively in a team.
- d3. Manage time effectively.
- d4. Make appropriate decisions depending on studying situations.
- d5. Collect the gained experiences in certain pharmaceutical activities.
- d6. Work with minimal guidance using full range of resources.
- d7. Communicate effectively with others.

3. Contents

Teaching Weeks	Торіс	No. of hours	Lecture	Practical
	Colorimetry		3	
One	Determination of Lambda Max of KMNO ₄	5		2
	Spectrophotometry		3	
Two	Determination of conc of Potassium	5		
	Permenganate (KMNO ₄) sample .			2
	Spectrophotometry		3	
Three	Effect of PH on the absorption Spectrum of Methyl Red (MR)	5		2

	Flame spectroscopy			
	r fame speeroscopy	5	3	
Four	Effect of PH on the absorption			1.5 + 0.5
1 001	Spectrum of Methyl Red (MR)			1.5 + 0.5
	+ First Midterm Exam			
	Fluorimetry		3	
Five	Spectrophotomery Revision.	5		2
	Fluorimetry		3	2
Six	First Practical Exam.	5		2
	Potentiometry		3	
		5	5	
Seven	Potentiometry-Determination of	-		
	Strength of HCL.			2
	Second Midterm exams			2
Eight				
	Potentiometry			
Nine		5	3	
1 vinc	Conductometry.	-		2
	Conductometry+Polarography			_
		5	3	
Ten			C	
	Conductometry+Chromatography	-		2
	Chromatography		3	
Eleven	Chromatography	5		2
T 1	Chromatography		3	
Twelve	Final Practical Exam	5		2
Thirteen	Revision		3	
Infreen		3		
Total No.		58	36	22
of hours				
Fourteen	University Elective Final Exams			
Fifteen				
.	Final Exams of Faculty			
Sixteen				

4. Teaching and Learning Methods

- 4.1. Lectures.
- 4.2. Practical sessions.
- 4.3. Group discussions.
- 4.4. Data analysis.
- 4.5. Problem solving.
- 4.6. Office hours.

5. Student Assessment Methods

- 5.1. Practical exam to assess practical and professional skills.
- **5.2.** Written exams to assess knowledge and understanding as well as intellectual skills.
- **5.3.** Oral exam to assess all types of skills and mainly general and transferable skills.
- 5.4. Class work to assess all types of skills.

Assessment Schedule

Assessment 1	First Midterm Exam	Week 4
Assessment 2	Second midterm exan	n Week 8
Assessment 3	Practical exam	Week 12
Assessment 4	Final written exam	Week 15/16
Assessment 5	Oral Exam	Week 15/16
Assessment 6	Class work	(During the semester)

Weighting of Assessments

Mid-Term Examination			20%
Final-Term Examination			30%
Oral Examination			10%
Practical Examination			30%
Practical Examination	25%		
Activities	5%		
Classr Work		10%	
Total			100%

6. List of References

6.1. Course Notes

Staff lectures handouts are uploaded to the Moodle. Lab manual is given to each student.

6.2. Essential Books (Text Books)

• J.Mendham, R.C.Denney, J. D. Barnes & M.J.K. Thomas, Vogel's Quantitative Chemical Analysis (6th Edition), Prentice Hall, Upper Saddle River, NJ, (2000).

6.3. Recommended Books

- Frank A. Settle, Handbook of Instrumental Techniques for Analytical Chemistry , Prentice Hall, Upper Saddle River, NJ, (1997).
- Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Principles of Instrumental Analysis, (6th Edition) ,Stanford University, University of Kentucky, Stanley R. Crouch, (2007).
- 6.3. Periodicals, Websites,etc
- i. www.sfgate.com.
- ii. Sciencedirect.com.
 - Analytical chemistry, Anal.chem.Acta, Pharm.biomed.anal., Analyst., Pharm.abstracts, Chem. Abstracts,.....etc.

4. Facilities Required for Teaching and Learning :

- -Lecture halls
- -Laboratories.
- -Personal Computer
- Laboratory equipments (Centrifuges, balances, chemicals and ovens.

-Instruments: spectrophotometers, conductometers and pH meters water bathes & glass ware)

-Classroom clickers (student response systems).

-Computer equipped with projector

-White board.

Course Coordinator: -----

Head of Department: Prof.Dr. Ramzia Ismaeel Elbagary

Date:

6.4.

Pharmaceutical Organic Chemistry-I (PHC 114)

Program (s) on which the course is given:	Bachelor of Pharmacy
Department offering the program:	All Faculty Departments
Department offering the course:	Department of Pharmaceutical Chemistry
Academic year:	2014/2015
Approval Date:	September 2014

A-Basic Information

Course Title: Pharmaceutical Organic Chemistry-I		
Course Code: PHC 114		
Prerequisites:		
Students' Level/Semester:	First Level/ First Se	emester
Credit hours:	3 (2+1)	
Actual teaching hours per week: 4	hr	
Lectures: 2 hr/week	Practical: 2 hr/week	Tutorial: N/A
Total: 4 hr/week		

B- Professional Information

1 - Overall aims of course

By the end of this course the students will be able to demonstrate knowledge of the basic concepts of organic chemistry effectively, and to carry simple organic experiments safely and under the supervision of their instructors.

2 – Intended learning outcomes of course (ILOs)

By the end of this course the students will be able to: a-Knowledge and understanding:

- a1. State names of aliphatic compound.
- a2. Identify the basics of aliphatic hydrocarbons.
- a3. Recognize the basics of aliphatic alcohols, ethyl halides and ethers.
- a4. Identify the basics of carbonyl compounds and derivatives.
- a5. Recognize the basics of amines.
- a6. Describe all reaction mechanisms of aliphatic Organic Compounds.
- a7. Recall all chemical reactions of aliphatic hydrocarbons
- a8. Recognize the commonly used organic terminology.

b- Intellectual skills

- b1. Analyze problems regarding aliphatic Hydrocarbons.
- b2. Assess problems regarding aliphatic alcohols, ethyl halides and ethers
- b3. Solve problems regarding carbonyl compounds and derivatives.
- b4. Analyze problems regarding amines.
- b5. Illustrate how to convert one compound to the other.
- b6. Predict different reaction mechanisms.
- b7. Select the most appropriate method of synthesis of classes of aliphatic organic compounds.

c- Professional and practical skills

- c1. Handle chemicals safely and efficiently.
- c2. Conduct standard pharmaceutical laboratory procedures and instrumentation.
- c3. Identify some organic compounds depending on their physical and chemical properties.
- c4. Prepare some pharmaceutical organic compounds.
- c5. Validate the mechanisms of aliphatic organic reactions.

d- General and transferable skills

- d1. Work effectively in a team.
- d2. Communicate effectively with others .
- d3. Use different resources to enhance professional skills.

3- Contents

Week	Торіс	No. of hours	Lecture / Week	Practical
One	INTRODUCTION			
	Chemical bonds and shapes of molecules Polar and non polar molecules. Orbital hybridization	2	2	-
Two	Types of reactions.			
	Classification of organic compounds.		2	
	Nucleophilicity and basicity.	4	2	
	Introduction			2
	CLASSES OF ALIPHATIC COMPOUNDS			
	The Study includes: Nomenclature, Synthesis, Phys. Reactions of:	ical Prope	erties and C	hemical
Three	Alkanes	4	2	

Quality Assurance Unit (QAU)/Course Specifications

AND PHARMACEUTICAL	SCIENCES LINDUSTRIES	Course S	pecificatio	ons
	Identification of Ethanol, Formaldehyde and Acetone			2
Four	Alkenes and Polyenes		2	
	Identification of Tartaric acid, Citric acid and Potassium Citrate 1 st Midterm Exam	4		1.5 practical 0.5 Exam
Five	Alkynes		2	
	Identification of Formic acid and Acetic acid	- 4		2
Six	Alkyl Halides, Alcohols	4	2	
	Identification of Urea and Ethyl acetate			2
Seven	Ethers, Carbonyl Compounds		2	
	Identification of Oxalic acid Preparation of 1,3,5-tripheyl-1,3,5-trazinane Preparation of Aurine	4		2
Eight	2 nd Midterm Exam			
	Carbonyl Compounds (1)		2	
Nine	Preparation of Ethyl acetate Addition of Sodium Bisulfite	4		2
Ten	Carbonyl Compounds (2)	4	2	
	Revision (1)	- 4		2
Eleven	Amines	4	2	
	Revision (2)	- 4		2
Twelve	Carboxylic Acids and Derivatives (1)	4	2	
	Final practical exam + Quiz			2
Thirteen	Carboxylic Acids and Derivatives (2)	2	2	
Total No. of hours		44	24	20
Fourteen	University Elective Final Exams			
Fifteen	•			
Sixteen	Faculty Final Exams			

4- Teaching and learning methods

- **4.1**. Data show and computer in lectures.
- **4.2.** Practical work.
- **4.3.** Group discussion.
- **4.4.** Problem solving.
- **4.5.** Power point presentations.
- 4.6. Office hours.

5- Student assessment methods

5.1. Written exams **to assess** knowledge and understanding and intellectual skills.

5.2. Practical exam and Quiz to assess professional and practical skills.

5.3. Class work and participation to **assess** knowledge and understanding as well as intellectual skills.

5.4. Oral exam **to assess** all types of skills and mainly general and transferrable skills.

Assessment Schedule

Assessment 1 Written Exam	ms Week: (4, 8, 15/16)
Assessment 2 Practical Exa	am Week: (12)
Assessment 3 Quiz	Week: (12)
Assessment 4 Oral Exam	Week: (15/16)
Assessment 5 Class work (Lab performance and participation in
	lectures) (During the semester)

Weighting of assessments

1st Mid-Term Examination		5%
2nd Mid-Term Examination		15%
Final-Term Examination		30%
Oral Examination		10%
Practical Examination		30%
Practical Examination	25%	
Quiz	5%	
Class Work		10%
Total		100%

6- List of references

6.1. Course notes

Staff lectures handouts are **uploaded to the Moodle**. Lab manual **is given to each student**.

6.2. Essential books (text books)

- Carey, F. A.; Giuliano, R. M. " Organic Chemistry",8th edition, McGraw-Hill international Edition (2011).

6.3. Recommended books

- Solomons & Fryhle, "Organic Chemistry", Wiley International/ 8th edition (2011).

6.4. Periodicals, Websites,etc Websites : <u>www.Wikipedia.com</u>

7. Facilities required for teaching and learning

- Lecture halls.
- Laboratories.
- Personal Computer (available for each staff member).
- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment (condensers, conical flasks, filter papers, separating funnel, spatula, water bathes and glass ware).
- Books.
- Library furnished with textbooks.
- •

Course coordinator:

Prof. Dr. Hanan M. Refaat

Head of Department:

Prof. Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Pharmaceutical Organic Chemistry-II (PHC 125)

Course Specifications

Program (s) on which the course is given:	Bachelor of Pharmacy
Department offering the program:	All Departments
Department offering the course:	Department of Pharmaceutical Chemistry
Academic year:	2014/2015
Date of approval:	September 2014

A-Basic Information

Title:	Pharmaceutical Organic Chem	istry-2
Code:	PHC 125	
Prerequisite:	Pharmaceutical Organic Chem	istry-1 PHC 114
Students' Level/ Semester:	First Level/ Second Semester	
Credit Hours:	4 (3+1)	
Actual Teaching Hours per	Week: 5	
Lectures: 3/ week	Practical: 2/week Tutorial: N/A	Total: 5/week

B- Professional Information

1 – Overall Aims of Course

The course aims to cover the basic knowledge of aromatic organic chemistry and heteroaromatic organic chemistry. It ensures that the student has acquired and understood the skills to apply the basic chemistry of aromatic and heteroaromatic organic compounds. The course also aims at giving students detailed knowledge about the synthesis - in particularly – the green synthesis of aromatic and heteroaromatic compounds. It gives certain examples of aromatic and heteroaromatic compounds which are registered as drugs and methods of their synthesis.

2 – Intended Learning Outcomes of Course (ILOs)

By the end of this course the students will be able to: a- Knowledge and Understanding:

- a1. Define the concepts of aromaticity of benzenoid and non benzenoid aromatic compounds.
- a2. Recognize the names of aromatic compounds.
- a3. Outline the mechanism of the reactions of aromatic organic compounds.
- a4. Describe synthesis and chemical reactions of aromatic and heteroaromatic organic compounds.

a5. Illustrate the chemistry of heterocyclic.

b- Intellectual Skills:

- b1. Solve problems related to organic compounds.
- b2. Identify aromatic compounds.

b3. Detect the mechanism of chemical reactions of aromatic and heteroaromatic organic compounds.

b4. Determine the functional groups of aromatic and heteroaromatic organic compounds and the chemical reactions of each.

b5. Suggest pathways of converting some compounds to the other.

c- Professional and Practical Skills:

- c1. Handle organic compounds and chemicals properly.
- c2. Identify aromatic organic compounds from their physical and chemical properties.
- c3. Convert some aromatic organic compounds to another.
- c4. Synthesize certain examples of aromatic and heteroaromatic compounds which are registered as drugs and methods of their synthesis.

d- General and Transferable Skills

- d1. Communicate effectively with others.
- d2. Collaborate actively in groups to solve organic problems.

3- Contents

Teaching Week	Торіс	No. of hours	Lecture	Practical
One	-1-Aromaticity - non benzenoid compounds - benzenoid compounds		3	
- melting point & crystalization				2
Two	-Reaction of Aromatic Compounds -Electrophilic substitution		3	
Тwo	- Identification of benzyl alc. & benzaldehyde -preparation of dibenzalacetone			2
Three	- Orientation	5	3	

	- Ortho- Para- Directing			
	groups & Meta- Directing			
	groups.			
	- Identification of bezoic acid & salicylic acid			2
	- preparation of aspirin			
		5	3	
	- Alkylbenzenes			
	- Aryl Halides			
Four	- Identification of benzene, toluene			
	and naphthalene			1.5 + 0.5
	- preparation of naphthalene picrate			
	+ 1st Midterm Exam			
	Work Shop, Dr. JJ, UCC	8	6	
Five	- Identification of methyl salicylate			2
	& aspirin			
	- hydrolysis of ester			
	- Identification of aniline, aniline	2	-	2
Six	+ Identification of annihe, annihe HCl and p-toludine			2
	field and p torusine			
	- Nomeclature of Heterocyclic	5	3	
	Compounds, Chemistry of five-			
	member heterocycles			
Seven	- Benzo derivatives of pyrrole,			
Seven	furan and thiophene			
	- Preparation of benylidene aniline			2
	- Revision 1			
Eight	2nd Midterm Exam			
	A mil aminos	5	3	
Nine	- Aryl amines			
	Revision 2			2
	- Chemistry of six-member	5	3	
	heterocyclic rings (pyridine)			
Ten	Banzo derivativos of puridinas			
1 011	-Benzo-derivatives of pyridines (Quinoline & Isoquinoline &			
	Acridine).			
	Revision 3			2
Eleven	-Phenols	5	3	

Quality Assurance Unit (QAU)/ Course Specifications

	Practical exam & Quiz			2
Twelve	. Aromatic Carbonyl Compounds (Aldehydes and Ketones)	3	3	
Thirteen	Aromatic Carboxylic Acids and Derivatives	3	3	
Total no. of hours		56	36	20
or hours				
Fourteen	University Elective Final Exams			

4- Teaching and Learning Methods

- 4.1. Modified Lecture (Students' Response System through Clickers).
- 4.2. Practical training/Laboratory
- 4.3. Seminar/Workshop
- 4.4. Class Activity
- 4.5. Group Discussion
- 4.6 Assignments

3. Student Assessment Methods

- 3.1. Written to assess knowledge and understanding as well as intellectual skills.
- 3.2. Practical and quiz to assess professional and practical skills.
- 3.3. Class work (Lab performance and participation) to assess all types of skills.
- 3.4. Oral exam to assess all skills including transferable skills.
- 3.5. Assignments to assess general and transferrable skills.

Assessment Deneulle		
Assessment 1	First Mid Term Exam	Week 4
Assessment 2	2 nd Mid Term Exam	Week 8
Assessment 3	Practical Exam	Week 11
Assessment 4	Final Written Exam	Week 15/16
Assessment 5	Oral Exam	Week 15/16
Assessment 6	Classwork (Participation	(during the Semester)
	& lab performance)	

Assessment Schedule

Weighting of Assessments	
1st Mid-Term Examination	5 %
2nd Mid-Term Examination	15 %
Final-Term Examination	30 %
Oral Examination	10 %
Practical	30 %
Practical Examination 25 %	
Activities (Assignments) 5 %	
Class Work (Participation & lab performance)	10%
Total	100 %

6. List of references

6.1. Course notes

-Staff Lectures Handouts are **uploaded to the Moodle.** - Lab Manual is **given to each student.**

6.2. Essential books (text books)

- Organic Chemistry, Francis A. Carey, Robert M. Guiliano, 8th edition, MgGraw-Hill international Edition (2011). (**Given to each Student**).

6.3. Recommended books

- Morrison, R. T.; Boyde, R. N. " Organic Chemistry",6th edition, Prentice Hall of India (1996).(**Available at the Library**).

- Solomons & Fryhle Organic Chemistry, Wiley International/ 11th Edition (2014).

(Available at the Library).

6.4. Periodicals, Websites,.....etc

http://www.wikipedia.org/

7- Facilities required for teaching and learning

- Study halls
- Laboratories
- Equipment
- Chemicals
- Glassware (beakers, condensers, glass rods, conical flasks,)
- Books

- audio-visual tools
- computer lab
- Meeting room for Office Hours
- White Boards

Course coordinator:

Prof. Dr. Khairia M. Youssef

Head of Department:

Professor Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Structural Elucidation of Organic Compounds (PHC 216)

Program (s) on which the course is given: Department offering the program: Department offering the course: Academic year: Approval Date: Bachelor of Pharmacy All Faculty Departments Department of Pharmaceutical Chemistry ------September 2014

A. Basic Information

Course Title: Structural Elucidation of Organic Compounds Course Code: PHC 216 Prerequisites: Pharmaceutical Organic Chemistry-II (PHC 125)

Students' Level/Semester:	Second level/ third semester
Credit hours:	3 (2+1)
Actual teaching hours per we	ek:
Lectures: 2 hr/week	Practical: 2 hr/week Tutorial: (Twice per semester)
Total: 4 hr/week	

B. Professional Information

1. Overall Aim of Course

After attending the lectures and tutorials, the student will be capable of independently using the different spectroscopic methods to elucidate the structures of Pharmaceutical Organic compounds, so he would be able to solve the spectroscopic problems for Pharmaceutical Organic compounds.

Upon successful completion of this course the student will gain basic knowledge of Stereochemistry and know the spatial (three-dimensional) structure of organic compounds. The course gives detailed knowledge about the reactions of stereochemical compounds and those with biological receptors. Moreover, the student will have basic knowledge about the recent techniques used in drug design process.

2. Intended Learning Outcomes (ILOs)

By the end of the course the student will be able to:

a- Knowledge and Understanding:

- a1. Identify the basics of Ultraviolet and Infrared spectroscopy.
- a2. Recognize the basics of nuclear magnetic resonance spectroscopy and elucidation of structure of Pharmaceutical Organic compounds.
- a3. Identify the basics of mass spectroscopy and elucidation of structure of Pharmaceutical Organic compounds.
- a4. Define the commonly used spectroscopic terminology.
- a5. Identify the basics of stereochemistry.

- a6. Define the commonly used stereo chemical terminology.
- a7. Identify the spatial 3 dimensional arrangement of organic compounds.
- a8. Describe different types of isomerism and its types of reaction mechanisms.
- a9. Enumerate the reactions of some selected classes of stereo chemical drugs.
- a10. Illustrate the reaction mechanisms of stereo chemical compounds.
- a11. Discuss theoretical concepts of spectroscopic tools.
- a12. Define stereo selective and stereospecific reactions of organic compounds knowledge.
- a13. Illustrate the principle of molecular modeling and different strategies of drug-receptor interactions through computer-aided drug design.

b- Intellectual Skills:

- b1. Develop critical thinking and decision-making skills.
- b2. Illustrate applied spectroscopic techniques to solve spectroscopic problems of Pharmaceutical Organic compounds.
- b3. Analyze spectroscopic data to identify different Pharmaceutical Organic compounds.
- b4. Convert one stereo chemical drug to another.
- b5. Solve stereo chemical problems.
- b6. Predict the spectroscopic tools to recognize different structures of Pharmaceutical Organic compounds.
- b7. Assess problems relevant to structure elucidation of Pharmaceutical Organic compounds.
- b8. Apply the principles of bioinformtics.

c- Professional and Practical Skills:

- c1. Apply a variety of spectroscopic concepts.
- c2. Analyze spectroscopic data of Pharmaceutical Organic compounds.
- c3. Predict the structure of unknown Pharmaceutical Organic molecules.
- c4. Build up stereo chemical compounds using stereo chemical models.
- c5. Detect stereo chemical compounds from their physical and chemical properties.
- c6. Use the tools for separation of stereo chemical isomers and racemic resolution.
- c7. Apply stereo chemical concepts for certain compounds with their biological receptors.
- c8. Synthesize some selected classes of stereo chemical drugs.
- c9. Select the molecular modeling technique used in drug design.

d- General and Transferable Skills:

- d1. Communicate effectively with others.
- d2. Collaborate actively in groups to solve stereo chemical organic problems.

3. Contents

Teaching	Торіс		No. of	T	
Weeks	Stereochemistry	Spectroscopy	hours	Lecture	Practical
	Constitutional	Introduction	4	2	
One	Isomerism				
	Introduction				2
	Constitutional	Ultra Violet	4	2	
Two	Isomerism	(UV)			
1 WU	Ultra Violet				2
	(UV)				
	Stereoisomerism	Ultra Violet	4	2	
Three	(Conformational	(UV)			
Timee	Isomerism)				
	Conformational Ise	omerism			2
	Geometrical	Infra Red (IR)	4	1.5	
	Isomerism			Lecture	
Four	First Midterm Exam			0.5 Exam	
rour	Infra Red (IR)				2
	Geometrical	Infra Red (IR)	4	2	
Five	Isomerism				
	Infra Red (IR)]		2
	Optical	Infra Red (IR)	4	2	
	Isomerism				
Six	Geometrical Isome	erism]		2
	First Practical Exam				
	Optical	1H NMR	4	2	
	Isomerism				
Seven	Optical Isomerism 1H NMR	1			2

Eight	Second Midterm exam		_	-	-
	Stereochemical	1H NMR	4	2	
	Reactions				
Nine	1H NMR				2
	Stereochemical	1H NMR	4	2	
Ten	Reactions	13C NMR			
ICH	Second Practical	Exam			2
	13C NMR tutorial	r			
	Chiral Molecules	13C NMR	4	2	
	that do not	Mass			
	possess chiral	spectroscopy			
Eleven	carbon				
	Computer lab for determination of				2
	the 3D of stereochemical				
	-	compounds tutorial			
	Chiral Molecules	Mass	4	2	
	that do not	spectroscopy			
Twelve	possess chiral				
	carbon		_		
	Mass spectroscopy tutorial				2
	Molecular Modelin	ng &	4	2	
Thirteen	Thirteen bioinformatics		_		2
	Tutorial		10	24	2
Total No.			48	24	24
of hours					
Fourteen	University Electi	ve Final Exams	-	-	-
			-	-	-
Fifteen					
	- Faculty Fin	al Exams			
	Lucuity I II		-	-	-
Sixteen					

4. Teaching and Learning Methods

- **4.1.** Data show and computer in lectures.
- **4.2.** Group discussion.
- **4.3.** Problem solving.
- **4.4.** Assignments.
- **4.5.** Power point presentations.
- **4.6.** Self-learning by discussion of projects prepared by students.
- **4.7.** Office hours.
- **4.8.** Case study.
- 4.9. Tutorial, problem-based learning.

5. Student Assessment Methods

- **5.1.** Class work (assignments, tutorial) to assess professional and intellectual skills.
- **5.2.** Written exams to assess knowledge, understanding and intellectual skills.
- **5.3.** Oral exam to assess all types of skills and mainly general and transferable skills.
- **5.4.** Research to assess general and transferrable skills.
- 5.5. Practical Exams to assess professional and practical skills.

Assessment Schedule

Week: (4, 8, 15/16)
Veek: (6 and 10)
Week: (15/16)
During the semester)
e and participation in
ng the semester)

Weighting of Assessments

	Total		100%
	Class Work		10%
	Research	5%	
	Second Practical Exam	15%	
	First Practical Exam	10%	
	Practical Examination		30%
	Oral Examination		10%
	Final-Term Examination		30%
	Second Mid-Term Examinatio	n	15 %
	First Mid-Term Examination		5%
-	8		

6. List of References

6.1. Course Notes

Staff lectures handouts are **uploaded to the Moodle**. Lab manual **is given to each student**.

6.2. Essential Books (Text Books)

Carey, F.A.; Giuliano, R. M. "Organic Chemistry", 8th edition, McGraw-Hill international Edition (2011).

6.3. Recommended Books

Solomons & Fryhle,"Organic Chemistry", Wiley International/ 8th Edition (2011).

6.4. Periodicals, Websites,etc www.Wikipedia.com

7. Facilities Required for Teaching and Learning

- Lecture halls.
- Personal Computer (available for each staff member).
- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment (stereo chemical models, computers, internet).
- Books.
- Library furnished with textbooks.

Course Coordinator:

Head of Department

Prof. Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Medicinal Chemistry-I (PHC 317)

Program (s) on which the course is given:	Bachelor of Pharmacy
Department offering the program:	All Faculty Departments
Department offering the course:	Pharmaceutical Chemistry Department
Academic year:	
Approval Date:	September 2014

A. Basic Information

Course Title: Medicinal Chemistry-I			Course Code: PHC 317		
Prerequisites: Structural Elucidation of Organic Compounds (PHC 216)					
Students' Level/Semester:			3rd year/5 th semester		
Credit hours:			4 (3+1)		
Actual teaching hours per week:					
Lectures:	3 hr/week	Practical: 2 hr/v	week T u	itorial: N/A	Total: 5
hr/week					

B. Professional Information

1- Overall Aim of Course

This course helps the student to:

- a. Understand the biological response due to the chemical structure of some compounds as antibiotics, sulfonamides, anticancer, antifungal, antiprotozoal, antiviral, anti-infective, anti- mycobacterial and anti- thyroid drugs.
- b. Understand the mode of action of the chemical structure of the above compounds on various receptors, enzymes and systems.
- c. Understand the modification of a compound structure to alter its physicochemical properties, which may affect its biological response or influence its formulation or administration.
- d. Study the side effects, if any-that arise from the chemical structure of the studied compounds.
- e. Study methods for synthesis of some drugs.
- f. Study methods for analysis of some drugs in pure and dosage forms.
- g. Study structure activity relationships.
- h .Study the nomenclature of some classes of drugs.

The practical course is designed to expose the student to various synthetic and purification techniques in medicinal chemistry and methods of determination in pure and dosage forms and purity tests.

2- Intended Learning Outcomes of Course (ILOs)

By the end of the course, the student should be able to:

a- Knowledge and Understanding:

- a1. Memorize the relationship of chemical structures and pharmacodynamics &, pharmacokinetic of some classes of drugs e.g. antibiotics and sulphonamides.
- a2. Correlate the relationship between chemical structures and biological actions of some classes of drugs e.g. anti-thyroid drugs.
- a3. Memorize the methods of synthesis of some classes of drugs e.g. anticancer drugs
- a4. Differentiate the analytical methods: principles, validation, application, and good laboratory practice.
- a5. Recognize the pharmacopoeial standards of the different methods of analysis of chemically active compounds e.g. antifungal drugs.
- a6. Memorize the nomenclature of some classes of drugs e.g. anti-infective drugs.
- a7. Summarize the concepts of drug synthesis and drug actions, side effects, and toxicities of some classes of drugs as antiprotozoal drugs.
- a8. Explain the structure, and function of drugs on treating diseases from structural/functional anomalies of some classes of drugs as antiviral drugs.

b- Intellectual Skills:

b1. Relate chemical structure of enzyme or receptor model to biological activity of some classes of drugs e.g. anti-mycobacterial drugs.

- b2. Discover lead compounds.
- b3. Develop different analytical procedures for the evaluation of different drugs and for quality control of pharmaceutical preparations.
- b4. Differentiate between different groups of drugs.
- b5. Predict the biological response of some groups of drugs and medical use by referring to their chemical structures.
- b6. Suggest the suitable route of administration of different drugs according to their chemical features.
- b7. Solve problems related to qualitative and quantitative information, extending to situations where evaluations have to be made on the basis of limited information.

- b8. Modify a compound structure to alter its physicochemical properties, which may affect its biological response and affect its formulation or administration
- b9. Calculate the concentration of drugs in pure and dosage forms.
- b10. Interpret the effect of various functional groups on drug action.
- b11. Relate the concepts of drug receptor interactions

b12. Relate the concepts of Structure Activity Relationships and drug metabolic pathways.

C-Professional and Practical Skills:

- c1. Use efficiently equipment for identification of different new compounds.
- c2. Solve various analytical problems
- c3. Suggest suitable analytical methodology for assay of an active ingredient in a bulk or a single component.
- c4. Perform chemical reactions for identification of compounds.
- c5. Apply various synthetic and purification techniques in medicinal chemistry

d- General and Transferable Skills:

- d1. Use variety of sources to retrieve information.
- d2. Develop presentation skills.
- d3. Manage time efficiently.
- d4. Work effectively in team.
- d5. Present pharmaceutical science materials and arguments clearly and correctly in writing and orally to both specialist and lay audience.

d6. Prescribe OTC drugs suitable for the patient taking in consideration the medical history of the patient.

3- Contents

Week	Торіс	No. of hours	Lecture	Practical
One	Antibiotics (β -lactam)	5	3	
One	Introduction to Semi-Quantitative			2

	analysis			
7 5	Antibiotics (β-lactam)	5	3	
Two	Limit test for Chloride			2
	Non β-lactam Antibiotic	5	2	
Three	Limit test for Sulphates		3	2
	Sulfonamides	5	3	
Four	Limit test for Iron			1.5
	1st Midterm Exam			0.5
Five	Anticancer drugs	5	3	
rive	Limit test for Lead			2
Six	Anticancer drugs Antimalarial	5	3	
SIX	Limit test for Heavy Metals	5		2
Corror	Antifungal drugs	5	3	
Seven	Difficulties	5		2
Eight	2 nd Mid-Term			
	Antiprotozoal (antiamoebic, anti-	5	3	
Nine	trypanosoma, antileishmania)			
	Titration			2
Ten	Antiviral	5	3	
Ten	Titration	3		2
	Anti-infective agents (alcohols,		3	
	aldehydes, acids, halogen			
Eleven	compounds, phenols, nitrofurans,	5		
Lieven	quinolones).	5		
	Final Practical Exam			2
Twelve	Antimycobacterial drugs	3	3	
Thirteen	Hormones (steroid)Antithyroid drugs	3	3	
Total no.		56	36	20
of hours				
Fourteen	University Elective Final Exams			
Fifteen	Final Exams	1		
Sixteen				

4- Teaching and Learning Methods

- 4.1. Data show and computer in lectures.
- 4.2. Laboratory sessions
- 4.3. Group discussion.
- 4.4. Data analysis.
- 4.5. Problem solving.

- 4.6. Assignments.
- 4.7. Power point presentations.
- 4.8. Demonstration videos.
- 4.9. Self-learning by discussion of projects prepared by students.
- 4.10. Office hours.

5- Student Assessment Methods

5.1. Written Exams to assess knowledge and understanding as well as intellectual skills.

5.2. Practical Exam and Quiz to assess the professional and practical capabilities of student.

5.3. Oral exam to assess all types of skills and mainly general and transferrable skills.

5.4. Class work (Participation & Assignments to assess all types of skills.

Assessment Schedule

Assessment 1	First Midterm exam	Week 4
Assessment 2	Second midterm examples	m Week 8
Assessment 3	Practical exam + Qu	iz Week 11
Assessment 4	Final Written exam	Week 15/16
Assessment 5	Oral exam	Week 15/16
Assessment 6	Class Work (Partici	pation & assignments) (During the
semester)		

Weighting of Assessments

Total	100 %
Quiz 5 %	
Practical Examination 25 %	
Practical	30 %
Class Work (Participation & Assignment)	10 %
Oral Examination	10 %
Final-Term Examination	30 %
2nd Mid-Term Examination	15 %
1st Mid-Term Examination	5 %

6. List of References

6.1. Course Notes

Staff lectures handouts are **uploaded to the Moodle**. lab manual **is given to each student**.

6.2. Essential Books (Text Books)

- Williams, A; Lemke, L, Foy's Principles of Medicinal Chemistry; 7th ed., by Lippincott Williams & Wilkins (2013).

6.3. Recommended Books

- i.Block, J; Beale, J, Wilson and Griswold's "Textbook of Organic Medicinal and Pharmaceutical Chemistry", 12th ed., by Lippincott Williams & Wilkins (2011).
- ii.Kathleen Parfitt, Martindale: The complete drug reference, 37th ed., by The Pharmaceutical Press, London (2012).
- iii. Brunton, L; Lazo, S; Parker, L, Goodman and Gilman's "The Pharmacological Basis of Therapeutics", 12th ed., by McGraw-Hill (2011).
- iv.Different pharmacopoeias (British, Egyptian, European, USP).
- v. The Merck Index, Merck and Co., INC, White house Station, 14th ed., 2012.
- vi.Williams, A; Lemke, L, Foy's Principles of Medicinal Chemistry; 7th ed., by Lippincott Williams & Wilkins (2011).
- vii.Remington: The Science and Practice of Pharmacy.
- viii.Other available medicinal chemistry books.
- ix. Donald, A. (Ed.), Burger's Medicinal Chemistry and Drug Discovery, 7th edition., John Wiley& Sons, Inc., Hoboken, New Jersy, volume 5: Chemotherapeutic agents (2010).
- Other available medicinal chemistry books.

6.4. Periodicals, Websites, ... etc

Periodical Scientific Journals: Journal of Medicinal Chemistry

Websites:

```
www.Sciencedirect.com
```

www.pubmed.com

7. Facilities Required for Teaching and Learning

- Lecture halls.
- Laboratories.
- Personal Computer (available for each staff member).

- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment (beakers, conical flasks, burettes, bulb pipettes...)
- Books.
- Audio-lectures.
- Library furnished with textbooks.

Course Coordinator: -----

Head of Department: Prof. Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Medicinal Chemistry-II (PHC 328)

Program (s) on which the course is given: Department offering the program: Department offering the course: Academic year: Approval Date:			Bachelor of Pharmacy All Faculty Departme Pharmaceutical Chem September 2014	nts
A. Basic Inform	nation			
Course Tit	le: Medicinal	Chemistry-II	Course Code: PH	IC 328
Prerequisi	tes: Structural	Elucidation of Organ	nic Compounds (PHC 2	16)
Students' l	Level/Semeste	r:	3 rd year/6 th semes	ster
Credit hou	irs:		4 (3+1)	
Actual tea	ching hours p	er week:		
	-	Practical: 2 hr/wee	ek Tutorial: N/A	Total: 5

B. Professional Information

Overall Aim of Course

This course helps the student to:

- a. Understand the biological response due to the chemical structure of compounds as oral hypoglycemic, cardiovascular drugs, diuretics, CNS depressants, stimulants and antidepressants, analgesics and antihistamines.
- b. Understand the mode of action of the chemical structure of the above compounds affecting various receptors, enzymes and systems.
- c. Understand the modification of a compound structure to alter its physicochemical properties, which may affect its biological response or influence its formulation or administration.
- d. Study the side effects, if any-that arise from the chemical structure of the studied compounds.
- e. Study methods for synthesis of some drugs.
- f. Study methods for analysis of drugs in pure and dosage forms.
- g. Study structure activity relationships.
- h .Study the nomenclature of drugs.

The practical course is designed to expose the student to various synthetic and purification techniques in medicinal chemistry and methods of determination in pure and dosage forms and purity tests.

2-Intended Learning Outcomes of Course (ILOs)

By the end of the course, the student should be able to: a- Knowledge and Understanding:

- a1. Memorize the relationship of chemical structures and pharmacodynamics &, pharmacokinetic ofsome drugs e.g.: oral hypoglycaemic drugs.
- a2. Correlate the relationship between chemical structures and biological actions
- of some classes of drugs as cardiovascular drugs.
- a3. Memorize the methods of synthesis of some drugs
- a4. Differentiate the analytical methods: principles, validation, application, and good laboratory practice.
- a5. Recognize the pharmacopoeial standards of the different methods of analysis of chemically active compounds as diuretics.
- a6. Memorize the nomenclature of some drugs as CNS depressants.
- a7. Summarize the concepts of drug synthesis and drug actions, side effects, and toxicities of CNS stimulants and antidepressants.
- a8. Explain the structure, and function of some drugs on treating diseases from structural/functional anomalies as analgesics and antihistamines.

b- Intellectual Skills:

b1. Relate chemical structure of enzyme or receptor model to biological activityof some classes of drugs.

- b2. Discover lead compounds.
- b3. Develop different analytical procedures for the evaluation of different drugs and for quality control of pharmaceutical preparations.
- b4. Differentiate between different groups of drugs.
- b5. Predict the biological response of some groups of drugs and medical use by referring to their chemical structures.
- b6. Suggest the suitable route of administration of different drugs according to their chemical features.
- b7. Solve problems related to qualitative and quantitative information, extending to situations where evaluations have to be made on the basis of limited information.

- b8. Modify a compound structure to alter its physicochemical properties, which may affect its biological response and affect its formulation or administration
- b9. Calculate the concentration of some drugs in pure and dosage forms.
- b10. Interpret the effect of various functional groups on drug action.
- b11. Relate the concepts of drug receptor interactions

b12. Relate the concepts of Structure Activity Relationships and drug metabolic pathways.

C-Professional and Practical Skills:

- c1. Use efficiently equipment for identification of different new compounds.
- c2. Solve various analytical problems.
- c3. Suggest suitable analytical methodology for assay of an active ingredient in a bulk or a single component.
- c4. Perform chemical reactions for identification of compounds.
- c5. Apply various synthetic and purification techniques in medicinal chemistry

d- General and Transferable Skills:

- d1. Use variety of sources to retrieve information.
- d2. Develop presentation skills.
- d3. Manage time effeciently.
- d4. Work effectively in team.
- d5. Present pharmaceutical science materials and arguments clearly and correctly in writing and orally to both specialist and lay audience.

d6. Prescribe OTC drugs suitable for the patient taking in consideration the medical history of the patient.

3- Contents

Week	Торіс	No. of hours	Lecture	Practical

0	Autonomic nervous system	-	3	
One	Assay of Aspirin	5		2
	Autonomic nervous system and Oral	5	2	
Two	Hypoglycemic		3	
	Assay of anti-inflammatory			2
	Oral Hypoglycemic	5	3	
Three	Assay of Oral Hypoglycemic			2
	Cardiovascular drugs	5	3	
Four	Assay of cardiovascular drugs			1.5
	1st Mid-Term Examination			0.5
F ire	Cardiovascular drugs	5	3	
Five	Assay of cardiovascular drugs			2
Six	Diuretics	5	3	
5IX	Assay of Diuretics			2
Seven	CNS depressants	5	3	
Seven	Chloral Hydrate assay			2
Eight	2 nd Midterm Exam			
	CNS depressants	5	3	
Nine	Sedative mixture assay, Assay of			2
	Aminophylline			
	CNS stimulants and Antidepressants	5	3	
Ten	Local anesthetic		3	
1 011	Assay of sedative mixture, Assay of			2
	Oral rehydran			
Eleven	CNS stimulants and Antidepressants	5	3	
Licven	Final Practical Exam + Quiz			2
Twelve	Analgesics (NSAIDs & Opioids)	3	3	
Iwerve				
	Analgesics (NSAIDs & Opioids)	3		
Thirteen	Antihistamines		3	
Total no.		56	36	20
		30	50	20
of hours				
Fourteen	University Elective Final Exam	S		
Fifteen				
- 1100011				
Sixteen	- Final Exams of Faculty			

4- Teaching and Learning Methods

- 4.1. Data show and computer in lectures.
- 4.2. Laboratory sessions
- 4.3. Group discussion.
- 4.4. Data analysis.
- 4.5. Problem solving..
- 4.6. Power point presentations.
- 4.6. Demonstration videos.
- 4.7. Self-learning by discussion of projects prepared by students.
- 4.8. Office hours.
- 4.9. Assignments.
- 4.10. Demonstrations.

5- Student Assessment Methods

5.1. Written Exams to assess knowledge and understanding as well as intellectual skills.

5.2. Practical Exams to assess the professional and practical skills.

5.3. Class work (Participation & Assignments) to assess general and transferrable skills.

5.4. Oral exam to assess all types of skills and mainly general and transferrable skills.

Assessment Schedule

Assessment 1	First Midterm exam	Week 4
Assessment 2	Second midterm exa	am Week 8
Assessment 3	Practical exam	Week 11
Assessment 4	Final Written exam	Week 15/16
Assessment 5	Oral exam	Week 15/16
Assessment 6	Class Work (Particip	pation and assignments) (During the
semester)		

Weighting of Assessments

1st Mid-Term Examination	5 %
2nd Mid-Term Examination	15 %
Final-Term Examination	30 %
Oral Examination	10 %
Class Work (Participation & Assignments)	10 %
Practical	30 %
Practical Examination 25 %	

Quiz Total 5 %

100 %

6. List of References

6.1 . Course Notes

- Staff lectures handouts are **uploaded to the Moodle**.
- lab manual is given to each student.

6.2. Essential Books:

Williams, A; Lemke, L, Foy's Principles of Medicinal Chemistry; 7th ed., by Lippincott Williams & Wilkins (2013).

6.3. Recommended Books

- i.Block, J; Beale, J, Wilson and Griswold's "Textbook of Organic Medicinal and Pharmaceutical Chemistry", 12th ed., by Lippincott Williams & Wilkins (2011).
- ii.Kathleen Parfitt, Martindale: The complete drug reference, 37th ed., by The Pharmaceutical Press, London (2012).
- iii.Brunton, L; Lazo, S; Parker, L, Goodman and Gilman's "The Pharmacological Basis of Therapeutics", 12th ed., by McGraw-Hill (2011).
- iv.Different pharmacopoeias (British, Egyptian, European, USP).
- v. The Merck Index, Merck and Co., INC, White house Station, 14th ed., 2012.
- vi.Williams, A; Lemke, L, Foy's Principles of Medicinal Chemistry; 7th ed., by Lippincott Williams & Wilkins (2011).
- vii.Remington: The Science and Practice of Pharmacy.
- viii.Other available medicinal chemistry books.
- ix. Donald, A. (Ed.), Burger's Medicinal Chemistry and Drug Discovery, 7th edition., John Wiley& Sons, Inc., Hoboken, New Jersy, volume 5: Chemotherapeutic agents (2010).
- Other available medicinal chemistry books.

-Periodicals, Web Sites, ... etc

-Periodical Scientific Journals:

Journal of Medicinal Chemistry

Websites:

- www.Sciencedirect.com
- www.pubmed.com

7. Facilities Required for Teaching and Learning

- Lecture halls.
- Laboratories.
- Personal Computer (available for each staff member).
- Computer equipped with projector and internet connection available for the usual lectures and Labs.
- Meeting rooms for office hours.
- White board.
- Different laboratory equipment and glassware (beakers, burettes, conical flasks, bulb pipettes, glass rod,.....).
- Books.
- Audio-lectures.
- Library furnished with textbooks.

Course Coordinator: -----

Head of Department: Prof. Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Drug Design and Development (PHC 429)

Program (s) on which the course is given Department offering the program: Department offering the course: Academic year:	Bachelor of Pharmacy All Faculty Departments Pharmaceutical Chemistry Department
Approval Date:	September 2014
A. Basic Information Course Title: Drug Design and Develop Prerequisites: Medicinal Chemistry-I (P	HC 317)
Students' Level/Semester:	Fourth year/8 th semester
Credit hours:	2 (1+1)
Actual teaching hours per week:Lectu	res: 1 hr/week Practical: 2
hr/week Tutorial: N/A Total: 3 h	r/week

B. Professional Information

1- Overall Aim of Course

The course comprises the physicochemical properties of drugs in relation to biological action. The student will be able to understand drug-receptor interactions, isosterism, drug metabolism, prodrug concept. He will also gain knowledge about the recent techniques used in drug design and drug development process. This will enable him to predict the pharmacological activity of the compounds from their chemical structure.

In the practical course, the student will be able to deal with some computer aided drug design software.

2- Intended Learning Outcomes of Course (ILOs)

By the end of this course, the student should be able to:

a- Knowledge and Understanding:

a1. Illustrate the chemical structure, pharmacophore moieties and consequently the structure activity relationships in each class of studied drugs.

a2. Memorize the relationship of chemical structures and pharmacodynamics &, pharmacokinetic of some classes of drugs.

a3. Enumerate the chemical basis for the mechanisms of drug actions.

a4. Demonstrate the process of drug design and synthesis.

a5. Explain the chemical and metabolic instabilities in each class of drugs.

a6. Recognize the metabolic changes of drugs

a7. Mention the side effects and uses of the titled drugs.

a8. Illustrate the principle of molecular modeling and different strategies of drug-receptor interactions through computer-aided drug design.

Intellectual Skills:

b1. Use enzyme or receptor model to relate chemical structure to biological activity.

b2. Differentiate between different groups of drugs.

b3. Predict the biological response of some drugs and medical use by referring to their chemical structures.

b4. Solve problems related to qualitative and quantitative information, extending to situations where evaluations have to be made on the basis of limited information.

b5. Interpret the effect of various functional groups on drug action.

b6. Relate the concepts of drug receptor interactions

b7. Relate the concepts of Structure Activity Relationships and drug metabolic pathways.

b8. Predict the activity of compounds according to the different techniques in molecular modeling.

b9. Apply the principles of bio-informatics and computer aided drug design.

b10. Modify a compound structure to alter its physicochemical properties, which may affect its biological response.

b11. Conclude the main concepts of Drug Design and Development and their application in understanding drug actions.

c- Professional and Practical Skills:

c1. Apply the given information to evaluate the activity of related compounds within a pharmacological class based on structural similarities and dissimilarities.

c2. Examine a drug structure to deduce relative receptor affinity, metabolic pathways, distribution potential, and potential side effects or toxicities based on functional group properties and structural similarity to other pharmacophores.

c3. Justify therapeutic recommendations based on an understanding of drug chemistry.

c4. Design new chemical entities based on computer-aided drug design.

c5. Predict the biological activity of drugs using computer aided drug design.

c6. Apply in practice setting the knowledge and understanding required to meet the needs of patients and other health care professional.

d- General and Transferable Skills:

d1. Use different resources retrieve information from a variety of sources.

- d2. Use gained skills for continuing professional development.
- d3. Develop presentation skills.
- d4. Manage time efficiently.
- d5. Work effectively in a team.
- d6. Make appropriate decisions for arising problems.

d7. Present pharmaceutical science materials and arguments clearly and correctly in writing and orally to both specialist and lay audience.

Teaching Weeks	Торіс	No. of hours	Lecture	Practical
One	Non-computational drug design Physicochemical properties of drugs Introduction to Accelrys discovery studio®, drawing structures , conformational analysis and energy minimization	3	1	2
Тwo	Non-computational drug design Physicochemical properties of drugs Introduction to Accelrys discovery studio®, drawing structures , conformational analysis and energy minimization	3	1	2

3- Contents

	-		se specifica	
	Structure characteristics and biological activity	3	1	
Three	Introduction to Catalyst® modules,	-		2
	Pharmacophore hypothesis			
	generation and data base screening			
	Structure characteristics and	3	1	
	biological activity			
	Introduction to Catalyst® modules,	-		1.5
Four	Pharmacophore hypothesis			
	generation and data base screening			
	First Midterm Exam			0.5
	- Stereo chemical aspects of	3	1	
	drugs			
	 Optical isomerism. 			
Five	Geometrical isomerism.	-		
	Receptor visualization, binding site			2
	determination			
	Conformational isomerism.	3	1	+
C .	Bioisosterism			
Six	Introduction to docking using			2
	Ligand fit module			
	Hansh QSAR equation and its	3	1	
Seven	application.			
Seven	Cdocker module and docking			2
	studies			
Eight	Second Midterm exam			
	Hansh QSAR equation and its	3	1	
	application.	5	1	
Nine	Cdocker module and docking	-		2
	studies			2
	Computer aided drug design	3	1	
	Introduction to Qsar and denovo	-		2
Ten	synthesis of Ligands using Ludi			
	Module.			
			1	ļ
	Computer aided drug design and	3	1	
Eleven	drug metabolism	-		
	Final Practical Exam			2
	Drug metabolism	1	1	
Twelve	-	1		
L		I	I	1

	Course operations			
Thirteen	Drug metabolism	1	1	
Total No. of hours		32	12	20
Fourteen	University Elective Final Exams			
Fifteen Sixteen	Final Exams of Faculty			

4- Teaching and Learning Methods

- 4.1. Data show and computer in lectures.
- 4.2. Laboratory sessions
- 4.3. Group discussion.
- 4.4. Data analysis.
- 4.5. Problem solving.
- 4.6. Assignments.
- 4.7. Power point presentations.
- 4.8. Demonstration videos.
- 4.9. Self-learning by discussion of projects prepared by students.
- 4.10. Office hours.
- 4.11. Case study.
- 4.12. Demonstrations.

5- Student Assessment Methods

5.1. Written Exams to assess knowledge and understanding as well as intellectual skills.

5.2. Practical Exam (including quiz) to assess professional and practical skills.

5.3. Class Work (Participation and assignments) to assess all types of skills and mainly general and transferrable skills.

Assessment Schedule

Assessment 1First Midterm examWeek 4Assessment 2Second midterm examWeek 8Assessment 3Practical examWeek 11Assessment 4Final Written examWeek 15/16

Assessment 5 Class Work (participation and assignments) (During the

semester)

Weighting of Assessments		
1st Mid-Term Examination		5 %
2nd Mid-Term Examination		15 %
Final-Term Examination		40 %
Class Work (Participation and	assignments)	10 %
Practical		30 %
Practical Examination	25 %	
Quiz	5 %	
Total	10	0 %

6- List of References

6.1. Course Notes

Staff lectures handouts are **uploaded to the Moodle**. lab manual **is given to each student**.

6.2. Essential Books (Text Books)

- Williams, A; Lemke, L, Foy's Principles of Medicinal Chemistry; 7th ed., by Lippincott Williams & Wilkins (2013).

-

6.3. Recommended Books

- Block, J; Beale, J, Wilson and Gisvold's "Textbook of Organic Medicinal and Pharmaceutical Chemistry", 12th ed., by Lippincott Williams & Wilkins (2011).
- Kathleen Parfitt, Martindale: The complete drug reference, 37th ed., by The Pharmaceutical Press, London (2012).
- Brunton, L; Lazo, S; Parker, L, Goodman and Gilman's "The Pharmacological Basis of Therapeutics", 11th ed., by McGraw-Hill (2006).
- Different pharmacopeias (British, Egyptian, European, USP).
- The Merck Index, Merck and Co., INC, White house Station, 14th ed., 2012.
- Remington: The Science and Practice of Pharmacy.
- Other available medicinal chemistry books.

- Donald, A. (Ed.), Burger's Medicinal Chemistry and Drug Discovery, 7th edn., John Wiley& Sons, Inc., Hoboken, New Jersy, (2010).

- Other available medicinal chemistry books.
 - Kristian Stromgaard, Povl Krogsgaard-Larsen, Ulf Madsen , Textbook of drug design and discovery , $4^{\rm th}$ ed. 2009
 - Izet M. Kapetanovic, Drug Discovery and Development Present and Future ,2011

6.4. Periodicals, Web sites, ... etc

Periodical Scientific journals:

Journal of Medicinal Chemistry **Websites:**

-www.pubmed.com www.orgsyn.syn

-www.drugdiscoverytoday.com

-www.cheminformatics.com

-www.merck.com

-www.Sciencedirect.com

7- Facilities Required for Teaching and Learning

- Discovery Studio 4.1 and Argus Lab. programs of molecular modeling, computer lab.
 - Lecture halls
 - Personal Computer (available for each staff member).
 - Computer equipped with projector and internet connection available for the usual lectures and Labs.
 - Meeting rooms for office hours.
 - White board.
 - Books.
 - Audio-lectures.
 - Library furnished with textbooks.
 - •

Course Coordinator: -----

Head of Department: Prof. Dr. Ramzia El-Bagary

Department Approval Date: September 2014

Analysis of Foods and Cosmetics (PHC 601)

Program(s) on which the course is given : Bachelor of Pharmacy		
Department offering the course	: All Faculty Departments	
Department offering the course	: Pharmaceutical Chemistry	
Academic year	:	
Approval Date	: September 2014	

A. Basic Information

Course Title: Analysis of food & Cosmetics			ourse Code: PHC 601
Prerequisite: I	nstrumental Analysis	(PHC 213)	
Student`s Leve	l/semester: Elective		
Credit hours: 2	(1+1)		
Actual teaching	g hours per week:		
Lectures: 1/week	Practical: 2/week	Tutorial: N/A	Total: 3/week

B. Professional Information:

1. Overall Aim of the Course :

The course aim to provide the post graduate students with the basic knowledge about the concept of application of analytical chemistry in the fields of analysis of foods as lipids (fats & oils) and milk products as (condensed, dried milk, etc.) as well as cosmetics.

2. Intended Learning outcomes (ILOs)

By the end of the course, the student should be able to:

a. Knowledge and Understanding:

- a1. Recognize the types of oils and fats analysis according to pharmacopeia monographs.
- a2. Identify methods of analysis of condensed milk and dry milk.
- a3. Discuss the types of Cosmetics analysis.

b. Intellectual Skills:

- b1. Select appropriate methods for the qualitative analysis of food and cosmetics.
- b2. Choose the suitable methods for quantitative analysis of food and cosmetics.
- b3. Assess problems relevant to physical principles.

c. Professional and Practical Skills:

- c1. Examine physical and chemical properties of oils, fats and milk.
- c2. Analyze some of cosmetic preparations.
- c3. Dispose hazardous materials according to safety measures.
- c4. Apply safety measures in practice.

d. General and Transferable Skills:

- d1. Interact efficiently with others.
- d2. Work effectively in a team.
- d3. Manage time effectively.
- d4. Make appropriate decisions.
- d5. Collect the gained experiences in certain pharmaceutical activities.
- d6. Work with minimal guidance using full range of resources.
- d7. Apply good oral and written communication skills.

3. Contents

Week	Торіс	No. of hours	Lecture	Practical
One	Composition of lipids	3	1	
	Physical examination of lipid	5		2
Тwo	Physical & chemical examination of lipids		1	
	Identification tests	3		2
Three	Physical & chemical examination of lipids	3	1	
	Acid value			2

Four	Physical & chemical examination of lipids Saponification value +1st Mid term exam	3	1	1.5 + 0.5
Five	Hydrogenation of lipids Oil report 1	3	1	2
Six	Rancidity of lipids & oil report Oil report 2	3	1	2
Seven	Rancidity of lipids & oil report Unknown sample & calculation % of adulteration of oil sample (Revision	3	1	2
Eight	Second midterm exam			
Nine	Analysis of butter fats Analysis of Ca ⁺² & Mg ⁺² in cosmetic	3	1	2
Ten	Analysis of milk Analysis of Al ⁺³	3	1	2
Eleven	Analysis of milk Revision	3	1	2

Twelve	Analysis of Cosmetics	3	1	
I weive	Practical exam			2
Thirteen	Analysis of Cosmetics	1	1	
Total no.		34	12	22
of hours				
Fourteen	University Elective Final			
rourteen	Exams			
Fifteen	Final Exams			
Sixteen	rmai Exams			

4. 4. Teaching and Learning Methods

- 4.1. Lectures.
- 4.2. Practical training/laboratory.
- 4.3. Data analysis.
- 4.4. Problem solving.
- 4.5. Office hours.
- 4.6. Case study.
- 4.7. Demonstrations.

5. Student Assessment Methods

5.1. Practical exam to assess practical and professional skills.

5.2. Written exam to assess knowledge and understanding as well as intellectual skills.

5.3. Class work (Lab. Performance) to assess all types of skills including general and transferrable skills.

Assessment Schedule

Assessment 1First Midterm	Week 4
Assessment 2Second Midterm	Week 8
Assessment 3Practical Exam	Week 12
Assessment 4Final Written Exam.	Week 15/16
Assessment 5Class Work (Lab perform	nance) (During Semester)

Weighting of Assessments

1 st Mid-Term Examination	5%
2 nd Mid -Term Examination	15%
Final-Term Examination	40%
Class Work (Lab performance)	10%
Practical	30%

Total		100%
Activities	5%	
Practical Examination	25%	

6. List of References

6.1. Course Notes

Staff lectures handouts are **uploaded to the Moodle** Lab manual is **given to each student**

6.2. Essential Books (Text Books)

-J.Mendham, R.C. Denney, J.D. Barnes & M.J.K. Thomas, Vogel's Quantitative Chemical Analysis (6th Edition),, Prentice Hall, Upper Saddle River, NJ, (2000).

6.3. Recommended Books

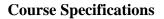
- W.W. Christie and X .Han. Lipid Analysis, 4th Edition, Elsevier, 2010.
- A.Salvador and A.Chisvert, Analysis of Cosmetic products, First Edition, 2007.
- Frank A. Settle, Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall, Upper Saddle River, NJ, (1997).

6.4. Periodicals, Websites,etc

http://www.wikipedia.org/

7. Facilities Required for Teaching and Learning

- Lecture halls
- Computer equipped with projector.
- White board.
- Different laboratory equipment (Electric Balance, water bathes, glass ware).


-Books.

- Library furnished with Textbooks.

Course Coordinator:.

Head of Department: Prof. Dr. Ramzia El Bagary

Department Approval Date: September 2014

Chemistry of Medicinal Heterocycles (PHC 602)

Course specifications

Programme on which the course is given:	Bachelor of Pharmacy
Department offering the programme:	All departments
Department offering the course:	Pharmaceutical Chemistry department
Academic year:	••••••
Date of specification approval:	September 2014

A- Basic Information:

Course Title:	Chemistry of Medicinal Heterocycles			
Course Code:	PHC 602			
Prerequisite:	Structural Elucidation of Organic Compounds (PH 216)			
Students' Level/Semester: Elective				
Credit Hours:	2(2+0)			
Lecture:	2 hr/week			
Tutorial:	Twice per semester			
Practical:	N/A			
Total:	2 hr/week			

B-Professional Information

1 – Overall aims of course

The lectures and practical labs of this course give the students information about how to identify the chemistry of medicinally important heterocycles drugs, how to correlate the physical and chemical properties of the pharmacophores with the drug activity and how to synthesize small drugs and organic compound with the help of his instructors.

2 – Intended learning outcomes of course (ILOs)

By the end of the course, the student should be able to:

a- Knowledge and understanding:

a1. Enumerate the basic chemistry of heterocyclic bases.

a2. Relate the chemistry of heterocyclic compounds and nucleosides with their functional group transformations.

a3. Recognize the synthesis and reactions of some heterocyclic drugs and nucleosides.

b- Intellectual skills

b1. Predict the mechanism of a given reaction.

b2. Solve problems related to organic compounds.

b3. Choose the appropriate method for synthesis of selected compounds.

c- Professional and practical skills

c1. Use studied data to handle pharmaceutical materials and chemicals safely afterwards.

c2. Apply standard pharmaceutical laboratory procedures and instrumentation.

c3. Identify the essential pharmacophore of the heterocyclic drugs.

c4. Apply studied data in future to synthesize some heterocyclic drugs of medicinal importance.


General and transferable skills

d1. Work effectively in team.

d2. Communicate effectively with others by oral and written means.

3- Contents

Week	Торіс	Total No. of hours	Hrs. of Lecture
One	Nomenclature of different heterocyclic Scaffold	2	2
Two	Reactions of Heterocyclic Compounds	2	2
Three	Reactions of Heterocyclic Compounds (Cont.)	2	2
Four	Chemistry of Nucleosides + First Midterm Exam	2	1.5 + 0.5
Five	Chemistry of Nucleotides	2	2
Six	Chemistry Of RNA and DNA	2	2
Seven	Chemistry Of RNA and DNA (Cont.)	2	2
Eight	Second Midterm Exam		
Nine	Study of Drugs Containing Nucleosides	2	2
Ten	Study of Drugs Containing Nucleosides (Cont.)	2	2
Eleven	Pharmacodynamics and Pharmacokinetics of heterocyclic Drugs	2	2
Twelve	Pharmacodynamics and Pharmacokinetics of heterocyclic Drugs (Cont.)	2	2
Thirteen	Revision	2	2
Total no. of hours		24	24
Fourteen	University Elective Final Exam		
Fifteen	Final Exam		
Sixteen			

4– Teaching and learning methods

- 4.1. Modified Lecture (Students' Response System through Clickers).
- 4.2. Seminar/Workshop
- 4.3. Class Activity
- 4.4. Group Discussion
- 4.5. Tutorials

5- Student assessment methods

5.1. Written exam(s) **to assess** knowledge and understanding, intellectual skills as well as professional skills.

5.2. Class Work (Tutorials) to assess all types of skills and mainly general and transferrable skills.

Assessment schedule

Assessment 1	First Midterm exam	Week 4
Assessment 2	Second Midterm exam	Week 8
Assessment 3	Final Written exam	Week 15/16
Assessment 4	Class Work (Tutorials)	During the semester

Weighting of assessments

First Midterm exam	10%
Second Midterm exam	20%
Final-Term Written Examination	40%
Class Work (Tutorial)	30 %
Total	100%

6- List of references

6.1. Course notes

Staff lectures handouts are uploaded to the Moodle.

6.2. Essential books (textbooks):

- Francis A. Carey, Robert M. Giuliano " Organic Chemistry",8th edition, Mcgraw-Hill International Edition (2011).

6.3. Recommended books:

- Solomons & Fryhle Organic Chemistry, Wiley International/ 11th Edition (2014).

6.4. Periodicals, Web sites, ... etc

http://www.chemweb.com http://www.chemistry.com

http://www.orgsyn.org

Head of Department:

Prof. Dr. Ramzia Ismail

Department Approval Date: September 2014

Course Specifications