

Faculty of Engineering & Technology

Thermal Power Systems

Information :

Course Code : MPR 355	Level	:	Undergraduate	Course Hours :	3.00- Hours

Department : Specialization of Mechatronics Engineering

Instructor Information :

Title	Name	Office hours
Lecturer	Anas Mohamed Abdelrahman Ali	
Assistant Lecturer	Zakaria Mostafa Abdo Salim Marouf	10

Area Of Study :

This course aims to:

- ⁷Ænrich the student Understanding about fundamentals of Thermal Power Systems
- Repare the student to apply the fundamental principles of Thermodynamics and Fluid Mechanics
- "Arain the student to Explore the fundamental principles of Heat Engines through analysis and experimentation
- ⁷ Develop the student skills for analyzing engines data and working in teams
- "Arain the student to share ideas and work in a team.

Description :

Basic characteristics, analysis and performance of different types of engines and thermal power systems, including: steam power, combined cycles, petrol engines, diesel engines, gas turbines and jet engines. Latest developments in automotive engines technology.

Course outcomes :

a.Knowledge and Understanding: : 1 -Identify principles in the field of design of fluid flow, thermodynamics, gas dynamics, turbo- machinery, heat transfer engineering and fundamentals of thermal and fluid processes. 2 -Describe conceptual and detailed design of fluid power systems. 3 -Explain the constraints which mechanical power engineers have to judge to reach at an optimum solution for thermal power systems. 4 -Describe basic types of internal combustion engines and vapor power plants. **b.Intellectual Skills: :** 1 -Derive different solution alternatives for the engineering problems in thermal power systems. 2 -Evaluate different power losses. 3 -Analyze the performance of the basic types of internal combustion engines and vapor power plants. c.Professional and Practical Skills: : 1 -Classify different types of internal combustion engines based on different criteria. 2 -Connect engine performance to design parameters, fuels and environmental conditions.

d.General and Transferable Skills: :

- 1 Write reports in accordance with the standard scientific guidelines.
- 2 Use digital libraries and/or Learning systems and demonstrate efficient IT capabilities.

Course Topic And Contents :

Торіс	No. of hours	Lecture	Tutorial / Practical
Ideal Air and Gas Power Cycles(Otto Cycle . APetrol Engine)	4	2	2
Ideal Air and Gas Power Cycles(Diesel Engine, Brayton Cycles-Gas Turbine)	8	4	4
Vapor Power Cycles (Basic Rankine and Superheat Cycles) + Midterm Examination 1	8	4	4
Improving Efficiency of Vapor Power Cycles (Reheat, Regeneration and Co-generation)	4	2	2
Improving Efficiency of Vapor Power Cycles (Combined and Binary Cycles)	4	2	2
Actual Cycles, Reheat, Regeneration	8	4	4
Gas Turbines and Jet Propulsion Systems (Jet Propulsion, Modifications to Turbojet Engines, Ramjets) + Mid-term Examination 2	8	4	4
Revision of Basic Principles of Thermodynamics (Definitions, Concepts, Fluid Properties Fundamental Laws)	8	4	4
Operating Characteristics of Reciprocating Engines(Engine Parameters, Efficiencies, Emissions and Noise)	8	4	4

Teaching And Learning Methodologies :

Interactive Lecture	
Problem based learning	
Discussion	
Experimental learning	
Project based learning	
Research	

Course Assessment :

Methods of assessment	Relative weight %	Week No	Assess What
Assignment	10.00	11	
Final Exam	40.00	16	
Mid- Exam 1I	15.00	11	
Mid- Exam I	15.00	6	
Participation	10.00	16	
Research	5.00	9	

Recommended books :

"Thermodynamics an Engineering Approach", Seventh Edition, 2011, By: Yunus Cengel and Michael A. Boles, Mc Graw Hill