

Faculty of Computers & Information Technology

Theory of Computations

Information :

Course Code :	CSC 416	Level	:	Undergraduate	Course Hours :	3.00- Hours
Department :	Department of Computer Science					
Instructor Information :						

Title	Name	Office hours
Associate Professor	Osama Fathy Saleh Hegazy	1
Teaching Assistant	YASMIN AMR AHMED ANWAR ALI BADR	5

Area Of Study :

This course deals with the theoretical foundations of computing, including abstract models of computing machines, the grammars those machines recognize, and the corresponding classes of languages. Topics include church's thesis; grammars, the m-recursive functions, and tuning computability of the m-recursive functions, the incompatibility: the halting problem, tuning innumerability, tuning acceptability, and tuning decidability, unsolvable problems about tuning machines and m-recursive functions, computational complexly: time – bounded tuning machines, rate of growth of functions, up – completeness, the complexity hierarchy, the prepositional calculus: syntax, truth – assignment, validity and satisfy, and equivalence and normal forms compactness, Recent correlated software packages should be used through labs.

Description :

This course deals with the theoretical foundations of computing, including abstract models of computing machines, the grammars those machines recognize, and the corresponding classes of languages. Topics include church's thesis; grammars, the m-recursive functions, and tuning computability of the m-recursive functions, the incompatibility: the halting problem, tuning innumerability, tuning acceptability, and tuning decidability, unsolvable problems about tuning machines and m-recursive functions, computational complexly: time – bounded tuning machines, rate of growth of functions, up – completeness, the complexity hierarchy, the prepositional calculus: syntax, truth – assignment, validity and satisfy, and equivalence and normal forms compactness, Recent correlated software packages should be used through labs

Course outcomes :

a.Knowledge and Understanding: :			
1 -	Know the theoretical foundations of computing.		
2 -	Understand advanced techniques for formal languages.		
3 -	Understand Grammars those machines recognize,		
4 -	Read, write, and manipulate an abstract specification describing the requirements of a computer system,		
5 -	Apply various proof methods of computing and corresponding classes of languages.		
6 -	Understand the abstract models of the process of computation such as Turing Machines, its variations, and Post Machines, and including abstract models of computing machines		

b.Intellectual Skills: :				
1 -	Explain and illustrate by means of examples the terms finite, non finite, and pushdown automata, and context free grammars, un-decidability, equivalence and decision procedures			
2 -	Describe and compare the main models of computing			
3 -	Analyze the complexity of simple computing programs			
4 -	Explain the use of formal systems in computers			
5 -	Good students will be able to formally analyze simple properties of on topics of formal specifications through proof.			
c.Professional and Practical Skills: :				
1 -	Approach the advanced formal languages with confidence			
2 -	Understand new advanced formal languages			
d.General and Transferable Skills: :				
1 -	Deploy communication skills			
2 -	Deploy research skills			
3 -	To work to tight deadlines			
4 -	Justify students design decisions in a written document			
5 -	Work more easily within a team to achieve an objective			

Course Topic And Contents :

Торіс	No. of hours	Lecture	Tutorial / Practical
Background to Theory of Formal Languages	4	2	2
Introduction to Formal Languages	4	2	2
Regular Expressions	4	2	2
Finite Automata	4	2	2
Non Deterministic Finite Automata	4	2	2
Midterm Exam I	4	2	2
Transition Graphs	4	2	2
Context-Free Grammars	4	2	2
Pushdown Automata	4	2	2
Equivalence of Computing Paradigms	4	2	2
Turing Machines	4	2	2
Midterm Exam II	4	2	2
Post Machines	4	2	2
Computers	4	2	2
Revision	4	2	2
Final Exam	4	2	2

Teaching And Learning Methodologies :

Lectures

Exercises

Projects

Course Assessment :					
Methods of assessment	Relative weight %	Week No	Assess What		
Final Exam	40.00	16			
Midterm I	15.00	6			
Midterm II	15.00	12			
Project	15.00	4			
Quizes & Assignments	15.00	2			