

Faculty of Engineering & Technology

Electrical Circuits 2

Information:

Course Code: EPR 263 Level: Undergraduate Course Hours: 4.00- Hours

Department : Department of Electrical Engineering

Instructor Information:					
Title	Name	Office hours			
Professor	Said Fouad Mohamed Mekhemar				
Associate Professor	Moneer Mohamed Ali Abu-Elnaga	8			
Assistant Lecturer	Ahmed Moreab Hussien Mohamed	3			
Assistant Lecturer	Ahmed Moreab Hussien Mohamed	3			
Teaching Assistant	Shahd Muhammed Anwer Muhammed Hamed	2			

Area Of Study:

Upon successful completion of the course, the student should be able to:

Description:

Transient analysis in R-L, R-C, and RLC circuits. Steady state power analysis for circuits with sinusoidal sources. Maximum power transfer theorem. Three phase circuits; connections, transformations, and power measurements. Magnetically coupled circuits: linear transformer equivalent circuits, ideal transformer. Frequency response, Series and parallel resonance circuits, Quality factor, 3 dB bandwidth, Resonance in mutually coupled circuits.

Course outcomes:

a.Knowledge and Understanding: :

1 -	a1. Demonstrate the transient performance of 1st order and 2nd order electrical circuits.				
2 -	a2. Demonstrate knowledge and understanding of AC power analysis.				
3 -	a3. Describe three phase circuits with different connections.				
4 -	a4. Understand magnetically coupled circuits.				
5 -	a5. Illustrate the frequency response of resonant circuits.				
6 -	a6. Establish the equivalent circuits of different two-port networks.				

Áunderstand the transient performance of 1st and 2nd order circuits.

Álevelop the steady state power analysis for circuits with sinusoidal sources and apply maximum power transfer theorem on AC electrics.

Aunderstand the operation of 3-phase circuits with different connections.

[&]quot;Áxnow the performance of magnetically coupled circuits and linear transformers.

Áunderstand the frequency response of circuits supplied by a variable frequency sources and the concepts of resonance circuits.

Abevelop practical skills of testing 1st and 2nd order circuits during transient, 3-phase circuits.

b.Intellectual Skills: :				
1 -	b1. Evaluate the transient performance of 1st and 2nd order circuits.			
2 -	b2. Perform basic calculations of AC power analysis.			
3 -	b3. Examine different connections of three phase circuits.			
4 -	b4. Perform basic calculations of magnetically coupled circuits.			
5 -	b5. Evaluate the frequency response of resonant circuits.			
c.Professio	onal and Practical Skills: :			
1 -	c1. Develop practical skills of testing 1st and 2nd order circuits during transient.			
2 -	c2. Practice basic experiments on 3-phase circuits.			
3 -	c3. Test the frequency response of resonant circuits.			
d.General a	and Transferable Skills: :			
1 -	d1. Work coherently and successfully as a part of a team in the Lab.			
2 -	d2. Communicate effectively.			
3 -	d3. Effectively manage tasks, time, and resources.			

Course Topic And Contents :						
Topic	No. of hours	Lecture	Tutorial / Practical			
Transient analysis in R-L and R-C circuits.	18	9	9			
Transient analysis in RLC circuits.	12	6	6			
Steady state power analysis for AC circuits.	12	6	6			
Three phase circuits.	12	6	6			
Magnetically coupled circuits	12	6	6			
Frequency response and resonance circuits.	12	6	6			
Revision on Electric Circuits 1	6	3	3			
Two-port networks.	6	3	3			

Teaching And Learning Methodologies :	
Lectures.	
Tutorials.	
E-Learning Program.	
Laboratories.	

Course Assessment:				
Methods of assessment	Relative weight %	Week No	Assess What	
″ÁFinal exam :	40.00			
o In Class Quizzes	10.00			
o Lab	10.00			
o Mid-Term exams	30.00			
o Participations	10.00			

				-11	I		_
к	eco	mm	en	aea	boo)KS	:

- 2. "Basic Engineering Circuit Analysis", J. D. Irwin, Fourth edition, Macmillan, most recent edition. 3. "Electric Circuits", James W. Nilsson and Susan A. Riedel, Addison Wesley, most recent edition. Ramsey.