

Faculty of Engineering & Technology

Engineering Thermodynamics

Information:

Course Code: MPR 251 Level: Undergraduate Course Hours: 4.00- Hours

Department : Department of Mechanical Engineering

<u>Instructor Information:</u>

Title	Name	Office hours
Lecturer	Anas Mohamed Abdelrahman Ali	6
Assistant Lecturer	Moustafa Raafat Aziz Shousha	3

Area Of Study:

The Main Goals of this course are:

- "Ænrich studentsøknowledge about thermodynamics.
- "Árain students to apply the fundamental principles of thermodynamics."
- "Állow students to explore the fundamental principles of thermodynamics through experimentation."
- *ADevelop students' skills for analyzing experimental data and working in teams.

Description:

Introduction, Fields of application, Fundamental concepts and definitions, Thermo-dynamics Systems; System Classification, Properties and State Processes and Cycles, Properties of a Pure substance; Vapor - Liquid - Solid - Phases of Pure substance, Ide-al gas relations, Work and Heat; definitions, kinds of work, heat transfer modes, The first law of thermodynamics; closed system analysis, Control - Volume analysis and applications, Transient process analysis, The second law of Thermodynamics; Heat Engines and Refrigerators, Carnot cycle, Reversed Carnot cycle, Entropy, Irreversibility and availability, Mixtures of gases.

Course outcomes:

a. Knowledge and Understanding: :

- 1 Identify basic applied and engineering science related to thermodynamics.
- 2 Define new terms in thermodynamics.
- 3 List different types of energies found in nature.
- 4 Distinguishes between ideal and real gases.
- 5 Demonstrate different methods to obtain the thermodynamic properties for different substances and phases.
- 6 Define the zeroth, first and second laws of thermodynamics.
- 7 Identify applications related to thermodynamics, considering the constraints which mechanical engineers have to judge to reach an optimum operation.

b.Intellectual Skills::

- 1 Deduce the equations of the first, second laws of thermodynamics.
- 2 Solve different engineering problems related to thermodynamics.
- 3 Analyse different engineering systems using thermodynamics principles.

4 -	Relate the energy efficiency ratio of a given system to Carnot efficiency.	
c.Professional and Practical Skills: :		
1 -	Practice basic experiments related to thermodynamics.	
2 -	Follow up safety requirements at experimental work and observe the appropriate steps to manage risks.	
3 -	Analyse experimental results.	
4 -	Write a technical report on a project or an assignment.	
d.General a	and Transferable Skills: :	
1 -	Collaborate effectively within multidisciplinary team in preparing researches in heat transfer.	
2 -	Refer to relevant literature.	

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Property and state, processes and cycles.	6	3	3
Definition of work and heat transfer.	9	6	3
Ideal gases; state equation; specific heat at constant pressure and volume.	6	3	3
Pure substances and phase equilibrium.	6	3	3
Tables of thermodynamic properties.	6	3	3
First law of thermodynamics; closed and open systems.	6	3	3
Applications of first law of thermodynamics.	6	3	3
Transient system analysis.	9	6	3
Second law of thermodynamics.	9	6	3
Basic concepts and definitions; system types.	6	3	3
Entropy.	12	6	6

Teaching And Learning Methodologies :	
Interactive lecture	
Discussion	
Problem-based learning	
Laboratory experiments	
Research activity	

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignments	5.00		
Final Exam	40.00	15	
Lab. Experiments	5.00		
Mid- Exam 1I	15.00	11	
Mid- Exam I	15.00	6	

Oral Exam	5.00	
Participation	10.00	
Quizzes	5.00	

Recommended books:

- 1) Fundamentals of Thermodynamics, Richard E. Sonntag, Claus Borgnakke, and Gordon J. Van Wylen , John Wiley &Sons, Inc., 2003
 - 2) Applied Thermodynamics for Engineering Technologists, T.D. Eastop and A.McConkey, Longman Group, Ltd. 1998