

# Faculty of Engineering & Technology

## **Stress Analysis**

#### **Information:**

Course Code: MAN 232 Level: Undergraduate Course Hours: 3.00- Hours

**Department :** Department of Mechanical Engineering

| Instructor Information : |                                           |              |  |  |
|--------------------------|-------------------------------------------|--------------|--|--|
| Title                    | Name                                      | Office hours |  |  |
| Professor                | Mohamed Tarek Ibrahim Mohamed Ali Elwakad | 2            |  |  |
| Lecturer                 | Arafa Soliman Sobh Khalil Arafa           | 1            |  |  |
| Teaching Assistant       | Eman Mohamed Hammad Ahmed                 |              |  |  |
| Teaching Assistant       | Ahmed Ibrahim Sadek Mostafa Elgindy       |              |  |  |

## **Area Of Study:**

- 1. Develop engineering ability and analyze a given mechanical elements under different stresses.
- 2. Discuss problem in a simple and logical manner and to apply its solution a few fundamental and well-understood principles of stress analysis.

#### **Description:**

Equilibrium, Continuity, Material mechanical behavior, Normal force, Shearing force, Bending and twisting moment diagrams, Stresses in simply loaded elastic bars: axial loading, bending and torsion, deformation, stiffness, strain Energy, Stresses in elastic and elasto-plastic bars, Residual stresses. Combined loading, Eccentric normal load, Oblique bending: combined bending and torsion, Two-dimensional stresses, Principal stresses, Maximum shear stress, Allowable stresses, Mohr's circle representation, Application to some simple frames, Thinvessels, Springs, Load and displacement measurement.

### Course outcomes:

#### a. Knowledge and Understanding: :

- 1 Identify the principles of design including elements stress analysis
- 2 Define the characteristics of stress analysis related to mechanical production engineering

#### b.Intellectual Skills: :

- 1 Analyze and interpret data, and design experiments to obtain primary data
- 2 Classify numerical data and apply analytical methods for engineering design purposes
- 3 Think in a creative and innovative way in stress and strain problem solving and design

## c.Professional and Practical Skills::

- 1 Explain a component or system, and carry out stress analysis problems.
- 2 Analyze knowledge of science, information technology, design, and engineering practice to solve stress problems



## d.General and Transferable Skills: :

- 1 Introduce ideas and solutions for many practical and engineering problems efficiently in predetermined time plan.
- 2 Use digital libraries and/or Learning systems

| Course Topic And Contents :                           |              |         |                      |
|-------------------------------------------------------|--------------|---------|----------------------|
| Topic                                                 | No. of hours | Lecture | Tutorial / Practical |
| bending moment diagram, Normal stress                 | 12           | 6       | 6                    |
| Shear stress & Torsional Stress                       | 10           | 6       | 4                    |
| Combined stress                                       | 8            | 4       | 4                    |
| Principal stresses, , Allowable stresses              | 4            | 2       | 2                    |
| Maximum shear stress                                  | 4            | 2       | 2                    |
| Reactions & Normal force diagram, Shear force diagram | 8            | 4       | 4                    |
| Mohr's circle representation                          | 4            | 2       | 2                    |
| Project follow -up.                                   | 4            | 2       | 2                    |
| Midterm Exams ,Quizzes                                | 6            | 2       | 4                    |

## **Teaching And Learning Methodologies:**

Interactive Lecturing

Problem solving

Discussion

| Course Assessment:                    |                   |         |                                                         |
|---------------------------------------|-------------------|---------|---------------------------------------------------------|
| Methods of assessment                 | Relative weight % | Week No | Assess What                                             |
| Assignments, Participation, & Quizzes | 20.00             |         | Reports follow up during tut. /lab work, & written exam |
| Final Exam                            | 40.00             | 14      | Written Exam                                            |
| Mid-term Exams                        | 30.00             |         | Written Exam                                            |
| Project.                              | 10.00             | 12      | Practical                                               |

## **Course Notes:**

Lecture notes on the course moodle page, FUE website.