

Faculty of Engineering & Technology

Physics 3

Information :

Course Code :	PHY 231	Level	•	Undergraduate	Course Hours :	3.00- Hours
Department : Department of Structural Engineering & Construction Management						

Instructor Information :

Title	Name	Office hours
Lecturer	AHMED MOHAMED ALI ASHOUR AHMED	21
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA	4

Area Of Study :

By the end of the course the students will be able to:

"Ænrich students' knowledge about Oscillations, waves, optics and Modern physics.

"Ænrich studentsoknowledge about atomic structure and crystal systems."

"Arain students to apply studied topics on application related to Structural engineering.

Description:

Ideal oscillation: representation, Energy and applications. Damped and forced oscillation. Classification of waves, Mechanical transverse wave, Sound waves: types, Speed and Intensity, Doppler effect. Superposition of waves, Standing Waves in string, rods and membranes. Light nature, Reflection, Refraction, Huygen's Principle. Interference: Conditions, Young's double slit, Intensity distribution, phase change. Diffraction: single and double slit patterns, diffraction grating. Polarization. Max-Planck's principle, photoelectric effect, the wave properties of particles, the quantum particle, uncertainty Heisenberg's principle. Hydrogen atom: Bohr's model, solids classification and crystalline structure. X-ray: production, spectral analysis, application.

Course outcomes :

a.Knowledge and Understanding: :				
1 -	a1- Explain and describe the types of oscillations and waves			
2 -	a2- Define optics and modern physics each as a single topic.			
3 -	a3- Describe and define geometrical and physical optics.			
4 -	a4- Explain the comparative view between classical and modern physics.			
5 -	a5- Describe the atomic physics and atomic structure.			
b.Intellectu	ual Skills: :			
1 -	b1- Analyze different physical quantities			
2 -	b2- Predict the action/outcome of different bodies, systems.			
3 -	b3- Justify the governing laws of oscillations, waves, Optics, modern and atomic physics.			
4 -	b4- Think logically and creatively.			

c.Professional and Practical Skills: :

1 -	c1- Measure the different physical parameters and perform experiments related to the studied topics.		
2 -	c2- Adapting knowledge to solve engineering problems using scientific tools.		
d.General and Transferable Skills: :			
1 -	d1- Work effectively in a team.		
2 -	d2- Accomplish the skills which are related to creative thinking, problem solver.		

Course Topic And Contents :

Торіс	No. of hours	Lecture	Tutorial / Practical
Ideal oscillation: representation, Energy and applications. Damped and forced oscillation.	10	6	4
Classification of waves, Mechanical transverse wave	12	6	6
Sound waves: types, Speed and Intensity, Doppler effect	5	3	2
Superposition of waves, Standing Waves in string, rods and membranes	10	6	4
Light nature, Reflection, Refraction, Huygens' Principle	9	3	6
Interference: Conditions, Young's double slit, Intensity distribution, phase change. Diffraction: single and double slit patterns, diffraction grating. Polarization	8	6	2
Max-Planck's principle, photoelectric effect, wave properties of particles, the quantum particle, and uncertainty Heisenberg's principle.	10	6	4
Hydrogen atom: Bohr's model, solids classification and crystalline structure. X-ray: production, spectral analysis, application	11	9	2

Teaching And Learning Methodologies :

Discussion	
Interactive Lecturing	
Problem solving	
Experimental learning	
Cooperative learning	

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
Final Exam	40.00	16		
Lab	20.00	1		
Mid-Term Exam 1	15.00	6		
Mid-Term Exam 2	15.00	11		
Participation and performance	10.00	1		

Course Notes :

handout and notes

Recommended books :

1ÈCollege physics-ÉGiambattista and Richardson, Mac gramttill, 3rd edition, 2010.

2È Rhysics for scientists and engineers E Serway, Thomson Brookes/Cok., 8th edition, 2010. a) College physics E Giambattista and Richardson, Mac gramttill, 3rd edition, 2010. b) Rhysics for scientists and engineers E Serway, Thomson Brookes/Cok., 8th edition, 2010. 8th edition, 2011.