

Faculty of Economics and Political Science

Mathematical Economics

Information:

Course Code: MTH 210 Level: Undergraduate Course Hours: 3.00- Hours

Department: Department of Economics

Instructor Information:

Title	Name	Office hours
Lecturer	Rania Ramadan Moawad Mohamed	2

Area Of Study:

This course presents different types of equations with their graphical representations; it proceeds to the rules of differentiation, (partial differentiation- marginal analysis- different types of optimization, linear and non-linear first and second order differentiation). Then it continues with the rules of integration, (indefinite and definite integration). The course also introduces matrices (definition- operations on matrices and determinants, inverse of a matrix, Jacobian Matrix, Hessian Matrix). It also identifies the Linear- Equation System and Cramer's Rule; homogeneous and homothetic functions, as well as explaining concavity and convexity; quasi- concavity and quasi-convexity.

Course Goals:

- "Ácquaint students with graphing different types of equations and analyze them.
- "Á each students the calculation of derivatives, partial derivatives and solving optimization problems."
- *Acalculate different comparative static problems to find maximum and/or minimum of functions of single or several variables.
- "Æamiliarize students with the rules of Integration.

Description:

This course presents different types of equations with their graphical representations; it proceeds to the rules of Differentiation, (partial differentiation- marginal analysis- different types of optimization, Linear and Non- Linear first and second order differentiation). Then it continues with the rules of Integration, (Indefinite and definite integration). The course also introduces Matrices (definition- operations on matrices and determinants, inverse of a matrix, Jacobian Matrix, Hessian Matrix). It also identifies the Linear- Equation System and Cramer's Rule; Homogeneous and Homothetic Functions, as well as explaining Concavity and Convexity; Quasi- concavity and quasi-convexity.

Course outcomes:

a. Knowledge and Understanding: :

- 1 Recognize how to graph different types of equations and analyze them.
- 2 Define concepts of differentiation and Integration and their applications in economy.
- 3 Express definition, operations and determinants of matrices
- 4 Distinguish between different types of functions.
- 5 Identify Homogeneous and Homothetic Functions, as well as explaining Concavity and Convexity.

b.Intellectual Skills: :

1 - Analyze markets real case studies using optimization of economic functions.

2 - Relate the mathematical rules of differentiation, integration and matrices to real situations.

c.Professional and Practical Skills: :

- 1 Apply the Integration and derivatives rules to analyze economic problems and functions such as: profit, cost and revenue functions.
- 2 Employ mathematical equations to solve several economic problems.

d.General and Transferable Skills::

- 1 Justify economic real situations with critical thinking.
- 2 Inspire Innovation and knowing how to work towards the results.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introductory lecture and course outline - Revision of functions	5	1	1
Linear Equations (Graphs, Algebraic solution, supply and demand analysis, National Income determination)	10	2	2
Non Linear Equations(Quadratic functions, Revenue, cost and profit)	10	2	2
Basic concepts of Differentiation : Economic Applications	5	1	1
Midterm Exam		1	
Partial differentiation: basic concepts, rules and Economic Applications	5	1	1
Optimization of economic functions: Economic Applications applying the Lagrange multipliers approach to constrained optimization problems.	5	1	1
Integration (Definite and indefinite)	5	1	1
Matrices (definition- operations on matrices and determinants, inverse of a matrix, Jacobian Matrix, Hessian Matrix)	10	2	2
Homogeneous and Homothetic Functions Concavity and Convexity; Quasi- concavity and quasi-convexity	10	2	2
Final Exam		1	

Teaching And Learning Methodologies:

Data show and computer in lectures.

Case studies Applications.

Group discussion and presentations.

Course Assessment:						
Methods of assessment	Relative weight %	Week No	Assess What			
Course Work (Attendance, Participation, Assignments, Quizzes, Research Paperõ D	20.00		To assess understanding and to assess theoretical background of the intellectual and practical skills.			
Final Exam	40.00	15	To assess knowledge and intellectual skills.			
Midterm Exam	30.00	7	To assess professional skills.			
Tutorial	10.00					

