

Faculty of Computers and Information Technology

Signals and Systems

Information :

Course Code :	DM231	Level	:	Undergraduate	Course Hours :	3.00- Hours
-						

Department : Digital Media Technology

Instructor Information :

Title	Name	Office hours
Lecturer	Eman Ahmed Sayed Ahmed	1
Teaching Assistant	Ibrahim Ayman Ibrahim Ahmed Tagen	

Area Of Study :

Comprehend deeply the basic concepts and theories of continuous and discrete-time signals. Understand basic mathematics to learn the principles of signal convolution. Solve problems of linear time-invariant systems based on problem requirements. Compare, evaluate and select methodologies to learn important signal transforms such as continuous time and discrete time Fourier transforms, Laplace transform and z-transform.

Description :

Introduction to continuous time and discrete time signals and systems, linear time invariant systems, Fourier transform for continuous and discrete time signals, Sampling theorem, Laplace transform, Z-Transform, Transfer function; State apace representation; Applications

Course outcomes :

ge and Understanding: :
Identify the fundamental concepts and theories related to analog signals and systems description and classification
Discuss fundamental mathematics required to signal convolution integral
Explain the fundamental topics of signal transform such as Fourier transform, Laplace transform and z- transform
al Skills: :
Analyze the application of signal convolution integral

c.Professional and Practical Skills: :

1 -	Use MATLAB in signal analysis
2 -	Deploy effective computing technologies to solve problems of linear time invariant systems
3 -	Apply effective information to acquire and manage information storage and retrieval skills in signal transforms

d.General and Transferable Skills: :

1 - Exploit a range of learning resources

ABET Course outcomes :

1 -	Demonstrate adequate understanding of the basic concepts and theories of continuous and discrete-time signals.
2 -	Understand basic mathematics to learn the principles of signal convolution.
3 -	Solve problems of linear time-invariant systems based on problem requirements.
4 -	Compare, evaluate, and select methodologies to learn important signal transforms such as continuous time and discrete time Fourier transforms, Laplace transform and z-transform.

Course Topic And Contents :

· · · · · · · · · · · · · · · · · · ·			
Торіс	No. of hours	Lecture	Tutorial / Practical
Basic Signals and Systems: Continuous-Time Signal and Discrete- Time Signal	4	2	2
Basic Signals and Systems: Unit impulse and unit step functions	4	2	2
Basic Signals and Systems: Sampling and aliasing	4	2	2
Basic Signals and Systems: Continuous-time and discrete-Time signal properties.	4	2	2
Linear Time-Invariant (LTI) Systems: Convolution sum, the convolution integral	4	2	2
Linear Time-Invariant (LTI) Systems: Properties, difference and differential equations	4	2	2
Fourier Series Representation of Periodic Signals: Continuous- and Discrete-Time	4	2	2
Fourier Series Representation of Periodic Signals: Properties of Continuous-Time and Discrete-Time Fourier Series	4	2	2
Mid-Term Exam	2		
Continuous-Time Fourier Transform (CTFT)	4	2	2
Discrete-Time Fourier Transform (DTFT)	4	2	2
Laplace Transform	4	2	2
Z Transform	4	2	2
Final Exam	2		

Teaching And Learning Methodologies :

Interactive Lectures including Discussions
Tutorials
Practical Lab Sessions
Self-Study (Project / Reading Materials / Online Material / Presentations)
Problem Solving

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignments	10.00	4	
Final Exam	40.00	14	
Midterm Exam (s)	30.00	9	
Others (Participations)	10.00		

Quizzes 10.00 5

Course Notes :

An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle)

Web Sites :

Math Works Website http://www.mathworks.com