

Faculty of Computers & Information Technology

Signals and Systems

Information:

Course Code: DM231 Level: Undergraduate Course Hours: 3.00- Hours

Department : Digital Media Technology

Instructor Information:				
Title	Name	Office hours		
Lecturer	Mirvat Mahmoud Ahmed Ali AlQutt	1		
Teaching Assistant	SHAIMAA TAREK HASAN ABDEEN	1		

Area Of Study:

Comprehend deeply the basic concepts and theories of continuous and discrete-time signals.

Understand basic mathematics to learn the principles of signal convolution.

Solve problems of linear time-invariant systems based on problem requirements.

Compare, evaluate and select methodologies to learn important signal transforms such as continuous time and discrete time Fourier transforms, Laplace transform and z-transform.

Description:

Introduction to continuous time and discrete time signals and systems, linear time invariant systems, Fourier transform for continuous and discrete time signals, Sampling theorem, Laplace transform, Z-Transform, Transfer function; State apace representation; Applications

<u>Course οι</u>	tcomes:
a.Knowled	lge and Understanding: :
1 -	Identify the fundamental concepts and theories related to analog signals and systems description and classification
2 -	Discuss fundamental mathematics required to signal convolution integral
3 -	Explain the fundamental topics of signal transform such as Fourier transform, Laplace transform and z-transform
o.Intellect	ual Skills: :
1 -	Analyze the application of signal convolution integral
c.Professi	onal and Practical Skills: :
1 -	Use MATLAB in signal analysis
2 -	Deploy effective computing technologies to solve problems of linear time invariant systems
3 -	Apply effective information to acquire and manage information storage and retrieval skills in signal transforms
d.General	and Transferable Skills: :
1 -	Exploit a range of learning resources

Course Topic And Contents :						
Topic	No. of hours	Lecture	Tutorial / Practical			
Basic Signals and Systems: Continuous-Time Signal and Discrete-Time Signal	4	2	2			
Basic Signals and Systems: Unit impulse and unit step functions	4	2	2			
Basic Signals and Systems: Sampling and aliasing	4	2	2			
Basic Signals and Systems: Continuous-time and discrete-Time signal properties.	4	2	2			
Linear Time-Invariant (LTI) Systems: Convolution sum, the convolution integral	4	2	2			
Linear Time-Invariant (LTI) Systems: Properties, difference and differential equations	4	2	2			
Fourier Series Representation of Periodic Signals: Continuous- and Discrete-Time	4	2	2			
Fourier Series Representation of Periodic Signals: Properties of Continuous-Time and Discrete-Time Fourier Series	4	2	2			
Mid-Term Exam	2					
Continuous-Time Fourier Transform (CTFT)	4	2	2			
Discrete-Time Fourier Transform (DTFT)	4	2	2			
Laplace Transform	4	2	2			
Z Transform	4	2	2			
Final Exam	2					

Teaching And Learning Methodologies:

Interactive Lectures including Discussions

Tutorials

Practical Lab Sessions

Self-Study (Project / Reading Materials / Online Material / Presentations)

Problem Solving

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignments	10.00	4	
Final Exam	40.00	14	
Midterm Exam (s)	30.00	9	
Others (Participations)	10.00		
Quizzes	10.00	5	

es	:
	es

An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle)

Web Sites:

Math Works Website http://www.mathworks.com