

Faculty of Engineering & Technology

Elective 11/ Computer - Aided Information (GIS)

Information:

Course Code: ARC E11 Level: Undergraduate Course Hours: 3.00- Hours

Department: Department of Architectural Engineering

Instructor Information:

Title	Name	Office hours
Lecturer	DINA MAHMOUD ABDELRASHID NOSEIR	2
Assistant Lecturer	BASMA MOHAMED NAGIB IBRAHIM KHALIFA	

Area Of Study:

This course aims at:

Æxpanding the student's awareness of the basic concepts of spatial analysis (raster and vector data) and GIS data management.

A Train the student to use GIS applications such as ArcGIS software.

Description:

Data collection: Remote sensed images, Characteristics, Rectification, Spatial and spectral enhancement, Classification and Vectorization. ÁData analysis: Features elements (Vector/raster) cleaning, Attributes, Topology and query. ÁMap production: Data extraction and Symbolizing features.

Course outcomes:

a.Knowledge and Understanding: :

- 1 a1. Define basic concepts of spatial analysis (raster and vector data) and GIS data management
- 2 a2. List some different types of data analysis such as roads network analysis, natural hazard, culture resources, land cover and land ownership.
- 3 a3. Define the information modeling process.

b.Intellectual Skills::

- 1 b1. Analyze spatial data.
- 2 b2. Differentiate between vector and raster spatial data.

c.Professional and Practical Skills: :

- 1 c1. Visualize Data into forms.
 - c2. Use geographic information system software ArcGIS 10.5 to build information model.
- 3 c3. Manage geographic problems with GIS software

d.General and Transferable Skills::

1 - By the end of this course the student should demonstrate fair ability to: d1. Use Google maps

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction to remote sensing as spatial data source	4	2	2
Characteristics of satellite raster data as the most important GIS data capture	4	2	2
What is geographic information science and how does it relate to the use of GIS for scientific purposes Urban planning project	4	2	2
What exactly geographic information analysis	8	4	4
Vector and raster data structures	4	2	2
Geospatial data and its representation vector model and its topology	16	8	8
Georeferencing, projection and coordinate system	12	6	6
Geographic data model, Digital Elevation Model (3D raster analysis)	4	2	2
Regional planning final project	4	2	2

Teaching And Learning Methodologies:

Lectures.

Practical Work.

Course Assessment:

Methods of assessment	Relative weight %	Week No	Assess What
Assignments	20.00		
Attendance and evaluation.	10.00		
Final Exam.	40.00		
First midterm exam.	10.00		
Second midterm exam.	20.00		

Course Notes:

No Course notes

Recommended books:

1. Text Book:

by Longley, Goodchild, Maguire, and Rhind, Geographic Information Systems and Science, 2nd Edition, Wiley or ESRI Press, 2017.

- 2. ESRI web site (http://www.esri.com
- 3. An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle).
- 4. Handouts

Periodicals :		
-		

w	۵h	Site	•	
	CU	JILE	-	_

_