

Faculty of Engineering & Technology

Control Systems

Information:

Course Code: CMP 470 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Mechanical Engineering

Instructor Information:

Title	Name	Office hours
Lecturer	MOHAMED ABDELBAR SHAMSELDIN ALY	3
Assistant Lecturer	Rana Mohamed Abdel Rahman Saleh	5

Area Of Study:

At the end of this course, students should:

- 1- Comprehend the basic concepts of classical control systems.
- 2- Comprehend control systems theory considering only the Continuous Linear Time Invariant systems.
- 3- Derive transient response and steady state error.
- 4- Be able to do stability analysis
- 5- Perform root locus analysis
- 6- Perform frequency response analysis and state space methods.

Description:

Introduction to feedback control systems; Block diagram reduction and signal flow graphs; System time response and stability; Feedback systems performance specifications; Time; RootLocus; Frequency response analysis techniques; State space analysis of multivariable systems; Controllability, observability, and sensitivity; Basic controller design in frequency domain and state space; PID, lead-lag and lag-lead compensation; Analysis and design of feedback control systems using Matlab.

Course outcomes:

a. Knowledge and Understanding: :

	-
1 -	Define the objective of continuous control system.
2 -	Outline the Mathematical Modeling of different analog system.
3 -	Recall the mathematical tools in dealing with control systems.
4 -	Explain the different transient time responses and steady state error in control systems.
5 -	Illustrate how the stability of control systems could be evaluated.
6 -	Explain how to draw the root locus and bode diagram for control systems.
7 -	Understanding modeling and analysis using state space representation.
8 -	Knowledge about controller and observer.
	1017

b.Intellectual Skills::

1 - Select appropriate mathematical and different methods for modeling and analyzing problems.

2 -	Design continuous control systems applying appropriate knowledge and principles.		
3 -	Select appropriate solutions for engineering problems based on analytical thinking.		
4 -	Analyze system, processes and components critically.		
c.Professio	nal and Practical Skills: :		
1 -	Write MatLab code for developed design methods.		
2 -	Apply gained hardware and software skills to controller design in diverse mechatronics applications		
d.General a	nd Transferable Skills: :		
1 -	Collaborate effectively within multidisciplinary team. d2.		
2 -	Use digital libraries and/or learning systems and demonstrate efficient IT capabilities		

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Transient Response Analysis	4	2	2
Steady-State Response Analysis	4	2	2
The Root Locus Methods	4	2	2
Lead Compensation Design Based on The Root Locus Methods	4	2	2
Lag Compensation Design Based on The Root Locus Methods	4	2	2
Bode Diagrams	4	2	2
Lead & Lag Compensation Design Based on Bode Diagrams	4	2	2
State Space Representation and Analysis	4	2	2
Pole Placement Design	4	2	2
State Obsevers	4	2	2
Servo Systems	4	2	2

Teaching And Learning Methodologies:	
Interactive Lecturing	
Problem solving	
Experiential learning	

Course Assessment :					
Methods of assessment	Relative weight %	Week No	Assess What		
Assignments, Participation, & Quizzes	30.00				
Final Exam	40.00	16			
First Midterm Exam	15.00	5			
Second Midterm Exam	15.00	10			

Course Notes:

in MS Power Point or PDF format

Recommended books:

- 1- Automatic Control Systems, B. C. Kuo and F. Golnaraghi, 9th edition or higher, 2010, John Wiley & Sons, Inc.
- 2- Modern Control Systems, R. C. Dorf, R. H. Bishop, 12th edition or higher, 2010, Prentice Hall
- 3- Linear Control System Analysis and Design with Matlab, J. J. DAzzo, C. H. Houpis and S. N. Sheldon, 5th edition or higher, 2003, Marcel Dekker, Inc.
- 4- Control Systems Engineering, N. S. Nise, 6th edition or higher, 2010, John Wily