

Faculty of Engineering & Technology

Antennas and Propagation

Information:

Course Code: COM 521 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electronics & Communication

Instructor Information:

Title	Name	Office hours
Professor	Fawzy Ibrahim Abdelghany Hamama	2
Teaching Assistant	Merna Mohamed Emad Khafagy	

Area Of Study:

- 1- Enrich students' knowledge of the Antenna theory, Types, Analysis and Design.
- 2- Develop students diskills in the design of dipoles, Horns, reflector antennas.
- 3- Enrich students of knowledge about the different Satellite antennas.

Description:

The course of antenna includes the study, analysis, and design of:

Antenna types and antenna parameters, Wire antennas: small wire antenna, dipoles, monopole, folded . Áoop antenna, helical antennas (normal, and axial)- travelling wave antenna (including rhombic antennas). Arrays: broadside- binomial- Chybeshev, end fire array, and phased arrays. Aperture antennas: open end waveguides (rectangular, and circular apertures). Horns: sectoral, pyramidal, and conical horns. Reflectors: single, double and corner reflectors. Lens antennas: dielectric and parallel plates. Wide band antennas (spiral- LPDA). Microstrip antennas.

Course outcomes:

a. Knowledge and Understanding: :

- 1 a1. Explain the fundamental antenna terms and parameters, field patterns, Polarization Loss Factor (PLF), the antenna efficiency, and the antenna gain.
- 2 a2. Recognize the radiation characteristics of the dipole antennas, and the aperture antennas.
- 3 a3. Estimate of the different horn types, and determination of the geometrical parameters, the Power Budget, and (C/No) ratio for a communication Channel.
- 4 a4. Recognize the parabolic reflector antenna, the cassegrain system and the applications for the different antenna types.
- 5 a5. Explain the construction and functions of the control ground stations (GCS) for Satellite control.

b.Intellectual Skills::

- 1 b1. Apply the different techniques to the design of the different antenna systems calculations.
- 2 b2. Analyze the performance of different antenna systems.

c.Professional and Practical Skills: :

1 - c1. Measure the antenna field pattern, to determine HPBW, FNBW and SLL.

2 - c2. Measure of the antenna VSWR.

d.General and Transferable Skills::

- 1 d1. Work in stressful environment and within constraints.
- 2 d2. Communicate effectively.

Course Topic And Contents :				
Topic	No. of hours	Lecture	Tutorial / Practical	
Introduction to antenna definition and types. Fundamental antenna parameters	5	3	2	
Field regions, radiation power density and intensity. Directive gain, directivity, efficiency and gain	10	6	4	
HPBW, FNBW, polarization of the wave and of the antenna. Polarization types, the polarization loss factor (PLF).	10	6	4	
Friis transmission equation, Link budget calculations. Infinitismal dipole , radiation fields and radiation resistance. + Mid-Term Exam 1	10	6	4	
Finite length dipole, Half wave dipole. Radiation patterns and radiation resistance. Input impedance.	10	6	4	
Aperture antennas, rectangular aperture, Circular aperture. Radiation patterns, antenna characteristics, For different aperture field distributions. Electromagnetic horns. E-Sectoral Horn, H-Sectoral Horn. Pyramidal Horn. Conical Horn. Corrugated Horns. + Mid-Term Exam 2.	20	12	8	
Antenna Systems. Parabolic , Cassegrain, and Gregorian systems. GCS stations for Satellites	10	6	4	

Teaching And Learning Methodologies:

Interactive Lecturing

Discussion

Problem Solving

Experiential Learning