

Faculty of Engineering & Technology

Digital Signal Processing

Information:

Course Code: COM 561 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electronics & Communication

Instructor Information:

Title	Name	Office hours
Lecturer	Ashraf Ramadan Abdel Elaziz Abo Elalaa	2
Assistant Lecturer	Marwa Mohamed Zaki Mohamed Shaheen	1

Area Of Study:

"Ápevelop studentsoknowledge about the fundamentals of digital signal processing (DSP) systems and their evolution.

Description:

Digital filter design: finite impulse response, Infinite impulse response, Adaptive digital filters: concepts, algorithms, applications, Speech coders: speech signal analysis, waveform coders, vocoders, hybrid coders, Image processing: image coding, image enhancement, image compression.

Course outcomes:

a.Knowledge and Understanding: :

- 1 a1. Explain the fundamentals and theories of linear time-Invariant (LTI) systems.
 - 2 a2. Explain the fundamentals and theories of the Z-Transform and Inverse Z-Transform, applied to discrete time signals and systems.
 - 3 a3. Explain the fundamentals and theories of the discrete-time signals, and the frequency domain representation of sampling.
 - 4 a4. Explain the FIR and IIR filter design techniques and state their related terms.
 - 5 a5. Interpret the principles of digital filters and their application in different communication systems.

b.Intellectual Skills::

- 1 b1. Analyze and design LTI systems and digital filters.
- 2 b2. Use software tools in programming different DSP systems and evaluate their performance.
- 3 b3. Establish a technical design report on an assignment.

Course	Topic	And	Contents	•
Course	I ODIC	Allu	COLLELIC	

Topic	No. of hours	Lecture	Tutorial / Practical
Discrete Time Signals and their operations	5	3	2
Discrete Time systems and their properties	10	6	4

[&]quot;APrepare students to design digital filters.

[&]quot;ÁTrain students to evaluate the performance of digital filters."

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Linear Time-Invariant Systems	5	3	2
Z-Transform and Inverse Z-Transform	15	9	6
Periodic Sampling	5	3	2
Frequency Domain Representation of Sampling	5	3	2
Continuous-Time Processing of Discrete-Time Signals	5	3	2
Digital Processing of Analog Signals	10	6	4
FIR and IIR Filter Design Techniques	15	9	6

Teaching And Learning Methodologies:

Interactive Lecture

Discussion

Problem Solving

Project/Assignment

Course Assessment:

Methods of assessment	Relative weight % \	Week No	Assess What
″Æinal exam	40.00		
o In Class Quizzes	10.00		
o Mid-Term exams	30.00		
o Performance	20.00		

Course Notes:

Instructor notes

Recommended books:

B. P. Lathi, Modern Digital and Analog Communication Systems, Oxford University Press, 2010.