

Faculty of Computers and Information Technology

Computer Architecture

Information:

Course Code: CS312 Level: Undergraduate Course Hours: 3.00- Hours

Department : Digital Media Technology

Area Of Study:

"Develop and evaluate basic computer and accumulator logic.

- "Use all available principles and practices used in the design and analysis of a digital computer system.
- "Show a complete understanding of micro-programs and control unit.
- "Understand knowledge that enhances skills in parallel processing.
- "Compare and evaluate different functional units (bus system, memory unit, central processing unit, and input/output), and evaluate the techniques that control memory and address sequencing.

Description:

Sequential logic: flip-flops, registers. Microprocessors, computer instructions, interrupts, design of basic computer, control unit design, micro programming, parallel processing

$C_{\Delta i}$	irea	outcomes	
COL	urse	outcomes	_

a.Knowledge and Understanding: :

- 1 Discuss the fundamental concepts of computer architecture.
- 2 Explain the principles and techniques of transferring data in computer system and the required computer instructions
- 3 Outline the main types of interrupts showing the principles of memory control and parallel processing

b.Intellectual Skills: :

- 1 Analyze different problems in designing a basic computer
- 2 Propose a set of alternative solutions for bus system
- 3 Select appropriate methodologies and techniques for sequential and parallel processing.

c.Professional and Practical Skills: :

- 1 Apply effective information to implement arithmetic and shift micro-operations.
- 2 Deploy effective supporting tools to apply memory reference instructions to manage real memory
- 3 Create technical reports according to professional standards

d.General and Transferable Skills: :

- 1 Work on a team for the development of a requirements document
- 2 Apply communications skills in presentation and report writing of requirements engineering deliverables

ABET Course outcomes:

- 1 Analyze different problems in designing a basic computer.
- 2 Select appropriate methodologies and techniques for sequential and parallel processing

Use available principles and practices used in the analysis and design of a digital computer system.
Demonstrate understanding of micro-programmed control unit.
Compare and evaluate different functional units (bus system, memory unit, central processing unit, and input/output).

Course Topic And Contents :					
Topic	No. of hours	Lecture	Tutorial / Practical		
Latches, Flip Flops	4	2	2		
Registers, Counters	4	2	2		
Register Transfer Language, Bus and Memory Transfer	4	2	2		
Arithmetic Micro-operations, Logic Micro-operations, Shift Micro-operations	4	2	2		
Instruction Codes, Computer Registers	4	2	2		
Computer Instructions, Timing Cycle	4	2	2		
Instruction Cycle, Memory Reference Instructions	4	2	2		
Input-Output and Interrupt	4	2	2		
Mid-Term Exam	2				
Design of basic computer, Design of accumulator logic	4	2	2		
Control memory, Address sequencing	4	2	2		
Micro-program, Control unit	4	2	2		
Parallel Processing, Memory Hierarchy	4	2	2		
Final Exam	2				

Teaching And Learning Methodologies:

Interactive Lectures including Discussions

Tutorials

Practical Lab Sessions

Self-Study (Project / Reading Materials / Online Material / Presentations)

Problem Solving

Course Assessment :						
Methods of assessment	Relative weight %	Week No	Assess What			
Assignments	10.00	4				
Final Exam	40.00	14				
Midterm Exam (s)	20.00	9				
Quizzes	20.00	5				
Team Work Projects	10.00					

Course Notes:

An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle)

Recommended books:

Mostafa Abd-El-Barr, Hesham El-Rewini, Fundamentals of computer organization and architecture, John Wiley & Sons, latest edition.