

Faculty of Computers and Information Technology

Artificial Intelligence

Information:

Course Code: CSC 341 Level: Undergraduate Course Hours: 3.00- Hours

Department: Department of Computer Science

Instructor Information:

Title	Name	Office hours
Lecturer	HEBA MOHSEN MOHAMED MOSAAD HUSSIEN	4
Teaching Assistant	Belal Taha Fathi Taha Hussien	

Area Of Study:

Knowledge Representations: Predicate Calculus, Structured Representations, Network Representations. State Space Search: trees and graphs, heuristic search, model based reasoning, case-based reasoning, reasoning with uncertain or incomplete knowledge. Overview of AI languages, Overview of AI Application Areas.

Description:

Knowledge Representations: Predicate Calculus, Structured Representations, Network Representations. State Space Search: trees and graphs, heuristic search, model based reasoning, case-based reasoning, reasoning with uncertain or incomplete knowledge. Overview of Al languages, Overview of Al Application Areas

COL	urs	e o	utc	OII	ies	:

a.Knowledge and Understanding: :

- 1 Have some understanding of the basic concepts and techniques of AI
- 2 Have some understanding of the basic concepts of knowledge based systems
- 3 Have some understanding of some blind and heuristic search techniques
- 4 Have some understanding of issues in knowledge acquisition, and representation
- 5 Have some understanding of issues in monotonic and non-monotonic Logic
- 6 Have some understanding of Machine Learning and Neural Networks

b.Intellectual Skills::

- 1 Appreciate the subtleties related to different approaches to Al
- 2 Appreciate the subtleties related to different AI techniques
- 3 Decide the suitability of AI techniques for a problem/domain
- 4 Analyze and design a KBS for a simple domain.

c.Professional and Practical Skills::

- 1 Have some practice of knowledge acquisition
- 2 Represent knowledge of a domain in a suitable knowledge representation formalism
- 3 Write simple AI programs in PROLOG or C/C++.

4 -	Represent and implement AI solutions to a suitable AI problems	
5 -	Implement a KBS for a simple domain	
d.General a	nd Transferable Skills: :	
1 -	Deploy communication skills	
2 -	Deploy research skills	
3 -	Work effectively within a group to analyze, design and implement an Intelligent Systems	
4 -	To work to tight deadlines	
5 -	Effectively present the final work in a demo	
6 -	Justify students design decisions in a written document	

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction to Al Concepts	4	2	2
Problems and Problem space	4	2	2
Problem Characteristics	4	2	2
Al-Search	4	2	2
1st Mid-Term Exam	4	2	2
Knowledge Acquisition	4	2	2
Knowledge Representation (Production Rules)	4	2	2
Knowledge Representation (Semantic Nets Frame)	4	2	2
2nd Mid-Term Exam	4	2	2
Geometric analogy net	4	2	2
Recording Cases	4	2	2
Al Topics	4	2	2
Revision	4	2	2
Final Exam	4	2	2

Teaching And Learning Methodologies: Lectures Practical training Projects Web-Site searches

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
Final Exam	40.00	16		
Midterm I	15.00	6		
Midterm II	15.00	12		
Quiz &assignment	30.00	4		

