

### **Faculty of Computers and Information Technology**

#### **Digital Signals Processing**

#### Information:

Course Code: DM331 Level: Undergraduate Course Hours: 3.00- Hours

**Department:** Digital Media Technology

| Instructor Information : |                                              |              |
|--------------------------|----------------------------------------------|--------------|
| Title                    | Name                                         | Office hours |
| Lecturer                 | Eman Ahmed Sayed Ahmed                       | 2            |
| Lecturer                 | Eman Ahmed Sayed Ahmed                       | 2            |
| Teaching Assistant       | Hoda Ahmad Moustafa Abdelrahman Ismail       |              |
| Teaching Assistant       | Hajar Saleh Abdelwahab Mohamad Mohamad       |              |
| Teaching Assistant       | Debaj Shady Mahmoud Talha Mohamed Elmaghraby |              |

#### Area Of Study:

#### **Description:**

Review of principles of discrete signals in time and frequency; Transform-domain representations of discrete time sequences; Fast Fourier transform; Structural representations of digital filters; Digital Filter design problems; Implementation aspect of DSP algorithms; Introduction to filter banks and wavelets; Introduction to spectral estimation; Applications

| _             |      |          |     |     |  |
|---------------|------|----------|-----|-----|--|
| $\Gamma \sim$ | urse | $\Delta$ | +~~ | mac |  |
|               |      |          |     |     |  |

### a. Knowledge and Understanding: :

- 1 Discuss the fundamental concepts and theories related to discrete-time signals and systems description and classification, know the different types of Digital signals and systems.
- 2 Discuss the fundamental mathematics required toFourier series in different forms, and learn discrete time and fast Fourier transforms.
- 3 Identify the fundamental topics of implementation of discrete time systems, and digital filter design

#### b.Intellectual Skills::

- 1 Analyze the discrete signals in time and frequency domains
- 2 Propose set of alternative solutions for discrete systems in time and frequency domains by examples on electric systems
- 3 Select appropriate methodologies and techniques for digital filter design

#### c.Professional and Practical Skills::

1 - Deploy MATLAB for implementing different discrete time signal processing techniques

<sup>&</sup>quot;Use and adopt fundamental concepts and properties of discrete linear time invariant systems.

<sup>&</sup>quot;Solve problems using mathematical knowledge to convolve two discrete time signals.

<sup>&</sup>quot;Use all available principles and tools to solve difference equations and system function, and design digital filters.

<sup>&</sup>quot;Compare and evaluate different methods to learn discrete-time Fourier series, discrete time Fourier transform (DTFT), Z-transform, and Fast Fourier transform (FFT).



| 2 -         | Create technical reports according to professional standards                                            |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| 3 -         | Apply effective information storage and retrieval skills indifferent signal transforms                  |  |  |  |
| d.General a | d.General and Transferable Skills: :                                                                    |  |  |  |
| 1 -         | Exploit a range of learning resources                                                                   |  |  |  |
| 2 -         | Work on a team for the development of a requirements document, and manage time to meet deadlines        |  |  |  |
| 3 -         | Apply communications skills in presentation and report writing of requirements engineering deliverables |  |  |  |

| ABET Course outcomes : |                                                                                                                                                                  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1 -                    | Use and adopt fundamental concepts and principles of discrete linear time invariant systems.                                                                     |  |  |
| 2 -                    | Solve problems using mathematical knowledge to convolve two discrete time signals.                                                                               |  |  |
| 3 -                    | Use advanced techniques and tools to solve difference equations and system function, and design digital filters.                                                 |  |  |
| 4 -                    | Compare and evaluate different methods and techniques of discrete-time Fourier series, discrete time Fourier transform, Z-transform, and Fast Fourier transform. |  |  |

| Course Topic And Contents :                   |              |         |                      |
|-----------------------------------------------|--------------|---------|----------------------|
| Topic                                         | No. of hours | Lecture | Tutorial / Practical |
| Introduction to Digital Signal Processing     | 4            | 2       | 2                    |
| Discrete-Time Signals                         | 4            | 2       | 2                    |
| Discrete-Time Systems                         | 4            | 2       | 2                    |
| The Z- Transform                              | 4            | 2       | 2                    |
| Sampling of Continuous Time Signals (p1)      | 4            | 2       | 2                    |
| Sampling of Continuous Time signals (p2)      | 4            | 2       | 2                    |
| Structures for Discrete-Time Systems          | 4            | 2       | 2                    |
| Filter Design Techniques (p1)                 | 4            | 2       | 2                    |
| Mid-Term Exam                                 | 2            |         |                      |
| Filter Design Techniques (p2)                 | 4            | 2       | 2                    |
| The Discrete-Fourier Transform (p1)           | 4            | 2       | 2                    |
| The Discrete-Fourier Transform (p2)           | 4            | 2       | 2                    |
| Computation of the Discrete Fourier Transform | 4            | 2       | 2                    |
| Final Exam                                    | 2            |         |                      |

# **Teaching And Learning Methodologies:**

Interactive Lectures including Discussions

**Practical Lab Sessions** 

Self-Study (Project / Reading Materials / Online Material / Presentations)

Problem Solving

| Course Assessment :   |                   |         |             |
|-----------------------|-------------------|---------|-------------|
| Methods of assessment | Relative weight % | Week No | Assess What |
| Assignments           | 5.00              | 4       |             |



| Final Exam              | 40.00 | 14 |  |
|-------------------------|-------|----|--|
| Midterm Exam (s)        | 30.00 | 9  |  |
| Others (Participations) | 5.00  |    |  |
| Quizzes                 | 5.00  | 5  |  |
| Research and Reporting  | 5.00  |    |  |

## **Course Notes:**

An Electronic form of the Course Notes and all the slides of the Lectures is available on the Students Learning Management System (Moodle)

# Recommended books:

A. Oppenheim, A. Willsky and S. Hamid, Signals and Systems, Latest edition, ISBN: 978-0138147570

# Web Sites:

http://www.mathworks.com