

Faculty of Engineering & Technology

Electronic Circuits

Information:

Course Code: ELE 364 Level: Undergraduate Course Hours: 4.00- Hours

Department : Department of Electrical Engineering

Instructor Information :					
Title	Name	Office hours			
Professor	Mohamed Abdelhamid Abualata Ibrahim				
Lecturer	MOSTAFA MOHAMED SALAHELDIN ABDELKHALEK ELEWA	5			
Assistant Lecturer	Mohamed Essam Abd El Aziz Abd El Aal				
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA				
Teaching Assistant	Hamdy Sherif Hamdy Amin Elshehaby				

Area Of Study:

ÁUnderstand the principles of circuit design and its applications.

Analyze the performance and implement electronic circuits.

A rain the student to perform experiments on electronic circuits using electronic laboratory and software tools for circuit design and simulation.

Description:

Transistor small signal models: Exmodel, Analysis of audio frequency (AF) amplifiers: RC-coupled, high frequency model and frequency response, AF power amplifiers: Class-A, Push-pull operation (Class-A, Class-B, Class AB), Feedback amplifiers (FB): FB concept, stability, general characteristics of negative FB amplifiers, input and output impedances with FB, difference amplifier Operational amplifiers (OPAMPs):, OPAMP specifications and frequency characteristics, OPAMP applications: inverting, non-inverting, adder, subtracter, integrator, differentiator, Oscillators: concept of stability and oscillations, OPAMP oscillators (rectangular, sinusoidal, Wien bridge, phase shift, and tuned circuits). Multivibrators (MVs): bistable MVs, triggering, schmitt trigger, monostable and astable MVs, wave shaping circuits and the 555 timer.

Course outcomes:

a.Knowledge and Understanding: :

- 1 Describe the AF amplifiers and their frequency response.
- 2 List the various power amplifier circuits.
- 3 Recognize the design of the OPAMP amplifier circuits and their applications.
- 4 Recognize the multi-stage amplifiers including differential amplifier circuits.
- 5 Define the feedback circuits and their amplifiers.
- 6 Determine the various applications of oscillators.

b.Intellect	ual Skills: :
1 -	Analyze problems of amplifier circuits (OPAMP amplifiers, power amplifiers, multi-stage amplifiers, and feedback amplifiers) for optimized solutions.
2 -	Use professional software tools for design and implementing of electronic circuits.
3 -	Prepare a technical design report on an assignment.
4 -	Design of electronic circuits for engineering applications.
5 -	Evaluate the characteristics and performance of electronic circuits.
c.Professi	onal and Practical Skills: :
1 -	Apply theories and techniques of mathematics, basic electricity and electronics to solve electronic circuit problem.
2 -	Identify the components and requirements for designing a complete application circuit.
3 -	Use computational facilities and related software tools, measuring instruments, workshops and/or relevant laboratory equipment to design and diagnosis experiments.
4 -	Read thoroughly datasheets and identify appropriate specifications for required device and circuits.
d.General	and Transferable Skills: :
1 -	Collaborate effectively within multidisciplinary team
2 -	Communicate effectively.
3 -	Effectively manage tasks, time, and resources.
4 -	Search for information and engage in life-long self-learning discipline.

Course Topic And Contents :				
Topic	No. of hours	Lecture	Tutorial / Practical	
Power Amplifiers	12	6	6	
OPAMP amplifiers	21	9	12	
Differential Amplifiers	12	6	6	
Frequency response of the single stage amplifier	9	3	6	
Multistage Amplifiers	12	6	6	
Feedback Amplifiers	15	9	6	
Oscillator and Multivibrator	9	6	3	

Teaching And Learning Methodologies :	
Interactive Lecturing	
Problem solving	
Discussion	
Experiential Learning	

Course Assessment:				
Methods of assessment	Relative weight %	Week No	Assess What	
Final Exam	40.00			
o In Class Quizzes and participation	20.00			

o Lab Experiments & Project	10.00	
o Mid-Term Exams	30.00	

Course Notes :		
No course notes are required		