

Faculty of Engineering & Technology Digital Systems

Information:

Course Code: ELE 366 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Mechatronics Engineering

Instructor Information :			
Title	Name	Office hours	
Lecturer	Mohamed Ali Mohamed Elsayed Torad	6	
Teaching Assistant	Donia Waheed Mohamed Abdelmonem Saleem		

Area Of Study:

"Ænrich students' knowledge of the basic understanding of logic gates and digital circuits.

Description:

Number systems; Codes and coding; Logic gates; Minimization techniques applied to design of logic systems; Combinational circuits; Latches, flip-flops, registers and counters; Synchronous sequential circuit design; State machines; Memory and I/O logic elements; Discussion of microprocessors; Analog/digital and digital/analog converters.

Course ou	utcomes:
a.Knowled	dge and Understanding: :
1 -	Identify basic applied and engineering science related to digital systems.
2 -	Identify principles of digital logic design and its implementation in various fields of mechanical engineering and some other engineering disciplines.
3 -	Label the logic gates (e.g. AND, OR, NOT, XOR, XNOR, NAND, NOR).
4 -	List the Boolean algebra expressions.
5 -	Associate the minimization techniques applied to design of logic systems
6 -	Identify the memory types (i.e. capabilities of each memory type . Ámemory mapping)
7 -	Explain microprocessor principles and its main components
b.Intellect	ual Skills: :
1 -	Solve digital circuit and logical design problems in mechanical engineering.
2 -	Evaluate designs, processes, and performance of digital systems.
3 -	Apply latches and flip-flops to design systems solving problems at the mechanical engineering.
4 -	Adapt Synchronous sequential circuit design, State machines into mechanical engineering applications.

Make the student gain the ability to build mechatronics solutions using digital system components such as MUXs, Decoders, PLAs, Counters, etc.

A rain the student to analyze, minimize and synthesize combinational and synchronous sequential logic circuits via applying hardware and software skills through mini design projects.

5 -	Apply combinational circuits to design applications which fulfill specific mechanical engineering applications (e.g. counters).			
c.Professional and Practical Skills: :				

- 1 Prepare technical report considering results of lab experiments.
- 2 Apply gained design skills to solve applications in mechanical and mechatronics applications.

d.General and Transferable Skills::

- 1 Collaborate effectively within multidisciplinary team
- 2 Search for information in different sources.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Digital Systems and Binary Numbers	4	2	2
Boolean Algebra and Logic Gates	7	3	4
Simplification of Boolean Functions: The Karnaugh Map Method	8	4	4
Combinational Circuits	8	4	4
Latches and Flip-Flops	4	2	2
Synchronous Sequential Devices	6	4	2
Registers and Counters	8	4	4
Memory and Programmable Logic	7	3	4
Design Project Presentation	8	4	4

Teaching And Learning Methodologies :
Interactive Lecturing
Problem solving
Discussion
Experiential learning
Project
Research

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Final Exam	40.00		
First Midterm	15.00	6	
Participation Assessments	10.00		
Project	20.00	14	
Second Midterm	15.00	11	

Course Notes :		

- 1. Lecture notes
- 2. Handouts.

Recommended books:

Recommended Readings:

C.H. Roth, Jr. and L.L. Kinney, Fundamentals of Logic Design, Cen-gage Learning, Stamford CT, USA, 2014.