

Faculty of Engineering & Technology

Optical Electronics

Information:

Course Code: ELE 412 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electronics & Communication

Instructor Information :			
Title	Name	Office hours	
Associate Professor	KAMEL MOHAMED MAHMOUD HASSAN	2	
Assistant Lecturer	MOHAMED MOUSA SAYED EMAM AHMED	4	

Area Of Study:
□ Develop the students' knowledge about the principles of operation of photonic components.
☐ Develop the students' knowledge about optical and photonic components.
☐ Prepare students to analyze the photonic components.
☐ Perform the basic calculations of optical sources and optical detectors.
☐ Train students to perform basic experiments on optical and photonic components.

Description:

Introduction, Photons & Electrons. Maxwell's equations, Wave nature of light, Fundamentals of Optics. Interaction of radiation and atomic systems, particle/wave property, De-Broglie wave length, Uncertainty principle, Optical Coherence and Correlation. Radiation and Solids: Light and matter (light propagation in uniform dielectric medium, Rayleigh scattering, susceptibility, optical dispersion), rate equations and gain medium for two level system. Theory of laser oscillation: Fabry-Perot laser, Three-level System. Four-level System. Optical Sources- Gas Laser, Nd-YAG Laser, Semiconductor sources (LEDs & LDs). Optical Modulators. Photo detectors (PINs & APDs).

Course ou	tcomes:	
a.Knowledge and Understanding: :		
1 -	Review the main concepts of geometrical optics and Quantum theory.	
2 -	Explain the theory of semiconductor materials and their optical properties.	
3 -	Explain the operating principles of LEDs, Lasers, SLDs, and optical detectors.	
4 -	Review the fundamentals of optical and photonic devices.	
b.Intellect	ual Skills: :	
1 -	Analyze the main parameters related optical and photonic components.	
2 -	Examine the basic parameters of photonic devices.	
3 -	Compare of the different types of the used optical sources and detectors in optical fiber communications.	

c.Professio	onal and Practical Skills: :
1 -	Follow-up safety requirements at work.
2 -	Edit a professional technical report.
3 -	Interpret carefully the data sheets of optical and photonic devices.
4 -	Build-up experimental set-up to test the basic parameters of the optical component and photonic devices.
d.General	and Transferable Skills: :
1 -	Demonstrate a self-directed manner.
2 -	Show the ability to work coherently and successfully as a part of a team.
3 -	Manage time and meet deadlines.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction, Photons & Electrons. Maxwell's equations, Wave nature light, Emission of and Absorption processes.	5	3	2
Fundamentals of Optics, Ray optics: reflection, refraction, critical and Brewster angles. Interference of light, Interferometers, Diffraction and Polarization.		6	4
Light and matter: Emission, Propagation and Absorption Processes.	10	6	4
Optical Coherence and Correlation: Definition, Measurement of coherence and Practical examples.	5	3	2
Essential Physics of Radiation and Solids: Black body radiation, Classical results and Quantum results. Rate Equations and the Gain mechanism. Laser Structure, Mode locking and Q switching.	10	6	4
Electrons in solids: Laser sources (He=Ne Laser, Argon Laser and ND-YAG Laser), SC sources (LEDs and SLDs)	10	6	4
Optical Modulators: Internal modulation, External modulators: Electro optic, Magneto optic and Acousto-optic modulator.	10	6	4
Photo detectors: photo-emissive, photoconductive and photovoltaic detectors.	5	3	2
Testing of the basic characteristics of optical sources, detectors, and optical components.	10	6	4

Teaching And Learning Methodologies:	
Interactive Lecture	
Discussion	
Problem Solving	
Experimental Learning	
Cooperative Learning	
Research	
Project	

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
Final exam	40.00			
Lab test	10.00			
Mid- Exam I	15.00			
Mid- Exam II	15.00			
Participation	10.00			
Quizzes	10.00			

Recommended books:

"Fundamentals of Photonics" Bahaa E. A. Saleh, Malvin Carl Teich.