

Faculty of Engineering & Technology

Integrated Circuits

Information:

Course Code: ELE 561 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electronics & Communication

Area Of Study:

ÁUnderstand the basic principles of families of digital integrated circuits;

Ænhance the student skills in the basic principles of low-voltage low-power design issues.

ÁJnderstand the basic principles and theory of analog and Mixed-signal integrated circuits:

Ænhance the student skills in the design of communication subsystems.

ADesign, and simulate electronic circuits using the Electronic Design Automation (EDA)

Description:

Switching characteristics of transistors, Digital integrated circuits including ECL, T2 L, CMOS,

BiCMOS, Low voltage-low power and high performance design issues, Lab project, Design of analog circuits such as: current sources and mirrors, differential, low-noise and feedback amplifiers, mixers and oscillators, Applications of these circuits in areas such as A/D and D/A conversion and receiver front-end.

Course ou	tcomes:			
a.Knowled	ge and Understanding: :			
1 -	a1- Explain the basic principles of digital integrated circuits including ECL, T2 L, CMOS, BiCMOS.			
2 -	a2- Describe the basic principles and theory of low-voltage low-power design issues.			
3 -	a3- Explain the basic principles and theory of low-noise and feedback amplifiers in analog integrated circuits.			
4 -	a4- Illustrate the basic principles and theory of the A/D and D/A conversion in Mixed-signal integrated circuits.			
5 -	a5- Explain the basic principles mixers and oscillators in the receiver front-end.			
6 -	a6- Select the appropriate application of communication subsystems in the integrated circuit design.			
b.Intellect	ual Skills: :			
1 -	b1- Compare between different digital logic families in the digital integrated styles in terms of the functionality and performance.			
2 -	b2- Analyze low-noise and feedback amplifiers and the A/D and D/A conversion.			
3 -	b3- Analyze and design building units in the receiver front-end.			
c.Professi	onal and Practical Skills: :			
1 -	c1. Build the basic components and requirements to design a communication subsystem.			
2 -	c2. Develop the design and implementation of electronic circuits using software tools.			

3 -	c3. Develop technical report writing skills.			
d.General and Transferable Skills: :				
1 -	d1. Collaborate effectively within multidisciplinary team			
2 -	d2. Communicate effectively.			
3 -	d3. Effectively manage tasks, time, and resources			
4 -	d4. Search for information and engage in life-long self-learning discipline.			

Course Topic And Contents :						
Topic	No. of hours	Lecture	Tutorial / Practical			
Families of digital integrated circuits.	10	6	4			
Designing for high-speed digital circuits	5	3	2			
Designing for low-power digital circuits	5	3	2			
Low-noise and feedback amplifiers in analog integrated circuits	15	9	6			
The A/D and D/A converters	15	9	6			
Basic issues of mixers in the receiver front-end.	10	6	4			
Basic issues of oscillators in the receiver front-end.	10	6	4			
Applications of the communication subsystems in the integrated circuit design	5	3	2			

Teaching And Learning Methodologies:

Interactive Lecture

Discussion

Problem Solving

Experimental Learning

Cooperative Learning

Research

Site Visit (Field Trip)

Project / Assignment

Course Assessment: Methods of assessment Relative weight % Week No Assess What 40.00 Leb Experiment

Lab Experiment	5.00	
o In Class Quizzes	10.00	
o Mid-Term Exams	30.00	
o Project / Assignment	10.00	
Oral Exam	5.00	

Course Notes:

Instructor notes.

Recommended books:

Recommended book (text books): B. Razavi, RF Microelectronics, Prentice-Hall, 2012. Recommended book (text books): Behzad Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2001.

Æssential book: Neil H.E. Weste and David Harris; "CMOS VLSI Design, A Circuits

and Systems Perspective", 4rd Edition; Pearson Addison-Wesley; 2011.