

Faculty of Engineering & Technology

Renewable Energy

Information:

Course Code: EPR 413 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electrical Power Engineering

Instructor Information :					
Title	Name	Office hours			
Professor	Mohamed Mahmoud Samy Abdel Aziz				
Assistant Lecturer	Ahmed Moreab Hussien Mohamed	2			
Teaching Assistant	Mohamed Hassan Mohamed Mahmoud Abdelaal				
Teaching Assistant	Ibrahim Mohamed Ibrahim Farag				

Area Of Study:

- 1. Understand the need for renewable energy.
- 2. Know deferent kinds of renewable energy.
- 3. Know the relation between energy / cost considering cost (effect) of pollutions.
- 4.Go through wind, photovoltaic and solar thermal central receivers power plants and other renewable sources of energies.
- 5. Know how we can extract the maximum power of different sources.
- 6. Share ideas and work in a team or a group.

Course ou	Course outcomes :				
a.Knowledge and Understanding: :					
1 -	Demonstrate knowledge and understanding of components and concepts of renewable energies.				
2 -	Illustrate and describe solving techniques of renewable energies.				
3 -	Illustrate and describe theorems for solving the problems of different renewable energies.				
b.Intellect	ual Skills: :				
1 -	Express ideas in structural and mathematic terms so that quantities evaluation is facilitated				
2 -	Ability to apply different alternative solutions.				
3 -	Decide and chose among different solution alternatives.				
4 -	Evaluate obtained results both individually or as a part of team.				
c.Professi	onal and Practical Skills: :				
1 -	Testing electrical components				
2 -	Implementation for different renewable energies.				
3 -	Applying solution techniques on simple P V and wind turbine in the labs.				

d.General and Transferable Skills: :		
1 - Write technical reports in accordance with standard scientific guidelines.		
2 -	Work in a self-directed manner	
3 -	Work coherently and successfully as a part of a team in the Lab.	
4 -	Analyze problems and use innovative thinking in their solution.	

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Basic concepts, components of renewable energy.	5	3	2
Photovoltaic basics: sun tracking.	10	6	4
Maximum power point techniques	10	6	4
Wind energy conversion systems.	10	6	4
Wind energy generators	10	6	4
Solar thermal power plants.	10	6	4
Hydro power plants.	10	6	4

Teaching And Learning Methodologies:

Lectures

Tutorials

Laboratories

presentations of reports

Course Assessment:					
Methods of assessment	Relative weight %	Week No	Assess What		
Final Written exam	40.00	15	to assess the comprehensive understanding of the scientific background of the course, to assess the ability of problem solving with different techniques studied		
Home reports and presentations	10.00	6	To asses skills of the students		
Mid-Term 1	15.00	7	Exams to assess the skills of problem solving, understanding of related topics		
Mid-Term 2	15.00	11	Exams to assess the skills of problem solving, understanding of related topics		
Performance	10.00	14	to asses the performance of the students through the overall course		
Quiz 1 & Assigment 1	5.00	5	Exams to assess the skills of problem solving, understanding of related topics		
Quiz 2 & Assigment 2	5.00	9	Exams to assess the skills of problem solving, understanding of related topics		

Recommended books:

1EAStatus, Trends, challenges and the bright Future of solar Electricity from Photovoltaics + Steven S. Hegedus and Antonio luque.

2E Wind Energy System Gary L. Johnson, Manhattn, Ks. 3E Springer Series in photovoltaics Editors T. Kaniga, B Monemar and Y Yamamoto.