

Faculty of Engineering & Technology

Renewable Energy

Information:

Course Code: EPR 413 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electrical Power Engineering

Instructor Information:

Title	Name	Office hours
Professor	Mohamed Mahmoud Samy Abdel Aziz	2
Teaching Assistant	Ahmed Mohamed Abdelrahman Eid	

Area Of Study:

- 1. Understand the need for renewable energy.
- 2. Know deferent kinds of renewable energy.
- 3. Know the relation between energy / cost considering cost (effect) of pollutions.
- 4.Go through wind, photovoltaic and solar thermal central receivers power plants and other renewable sources of energies.
- 5. Know how we can extract the maximum power of different sources.
- 6. Share ideas and work in a team or a group.

Description:

Fuel Cells, fuel cell theory and history, types of fuel cells, applications, performance, future developments. Solar Energy, basic principles, history, collectors and cell types, performance, application and use. Advanced Wind Energy, wind turbine aerodynamics, characteristic of airfoil, lift, drag, stall, betz limit, simple vortex and blade element theory, blade pitch, cut-in rated and cut-out wind speed, wind turbine dynamics with induction and synchronous generators, modeling and wind turbine enhancement devices. Wave and Tidal Power, properties of waves, resources assessment, measurement methods, wave energy conversion devices, tidal behavior and power generation schemes. Safety and environmental issues.

Course outcomes:

a.Knowledge and Understanding: :

- 1 Demonstrate knowledge and understanding of components and concepts of renewable energies.
- 2 Illustrate and describe solving techniques of renewable energies.
- 3 Illustrate and describe theorems for solving the problems of different renewable energies.

b.Intellectual Skills: :

- 1 Express ideas in structural and mathematic terms so that quantities evaluation is facilitated
 2 Ability to apply different alternative solutions.
 - 3 Decide and chose among different solution alternatives.
 - 4 Evaluate obtained results both individually or as a part of team.

c.Professional and Practical Skills: :		
1 -	Testing electrical components	
2 -	Implementation for different renewable energies.	
3 -	Applying solution techniques on simple P V and wind turbine in the labs.	
d.General	and Transferable Skills: :	
1 -	Write technical reports in accordance with standard scientific guidelines.	
2 -	Work in a self-directed manner	
3 -	Work coherently and successfully as a part of a team in the Lab.	
4 -	Analyze problems and use innovative thinking in their solution.	

Course Topic And Contents :			
Topic	No. of hour	s Lecture	Tutorial / Practical
Basic concepts, components of renewable energy.	5	3	2
Photovoltaic basics: sun tracking.	10	6	4
Maximum power point techniques	10	6	4
Wind energy conversion systems.	10	6	4
Wind energy generators	10	6	4
Solar thermal power plants.	10	6	4
Hydro power plants.	10	6	4

Teaching And Learning Methodologies:	
Lectures	
Tutorials	
Laboratories	
presentations of reports	

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Final Written exam	40.00	15	to assess the comprehensive understanding of the scientific background of the course, to assess the ability of problem solving with different techniques studied
Home reports and presentations	10.00	6	To asses skills of the students
Mid-Term 1	15.00	7	Exams to assess the skills of problem solving, understanding of related topics
Mid-Term 2	15.00	11	Exams to assess the skills of problem solving, understanding of related topics
Performance	10.00	14	to asses the performance of the students through the overall course
Quiz 1 & Assigment 1	5.00	5	Exams to assess the skills of problem solving, understanding of related topics

Quiz 2 & Assigment 2	5.00		Exams to assess the skills of problem solving, understanding of related topics
----------------------	------	--	--

Recommended books:

1EAStatus, Trends, challenges and the bright Future of solar Electricity from Photovoltaics +Steven S. Hegedus and Antonio luque.

2ĒWind Energy SystemŒGary L. Johnson, Manhattn, Ks. 3ĒGpringer Series in photovoltaics-ĒGseries Editors T. Kaniga, B Monemar and Y Yamamoto.