

Faculty of Engineering & Technology

Induction Machines

Information:

Course Code: EPR 445 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electrical Power Engineering

Instructor Information :					
Title	Name	Office hours			
Professor	Rizk Mohamed El Sayed Hamouda	8			
Teaching Assistant	About Thanwat Said Awad	2			

Area Of Study:

- "ÁDevelop the students' knowledge about the construction, theory of operation, equivalent circuit, (voltage, current, power and torque) equations of 3-ph Induction Motors.
- *APrepare students to establish the main characteristics and performance of 3-ph Induction Motors.
- *ADevelop the students' knowledge about the starting methods and speed control of 3-ph Induction Motors.
- Abevelop the students' knowledge about the construction, theory of operation, equivalent circuit and the related equations, starting methods, speed control and main characteristics of each of 1-ph Induction Motors.
- "Árain students to gain practical skills of testing of Induction Motors."

Description:

3-ph Induction Motors: Construction, theory of operation, equivalent circuit, voltage, current, power and torque equations, Load (Torque/Slip) characteristics, Circle diagram, Starting methods, Speed control, Testing and experiments, and Double cage IM. 1-ph Induction Motors: Construction, theory of operation, equivalent circuit, voltage, current, power and torque equations, Load (Torque/Slip) characteristics, Starting methods, Testing and experiments. Induction generator, Induction regulator, Induction type phase shifter

Course outcomes:

a. Knowledge and Understanding: :

- 1 Explain the construction, theory of operation, equivalent circuit, main characteristics, and starting methods of 1-ph induction motors.
 - 2 Describe the speed control of 3-ph induction motors.
 - 3 Describe the starting methods of 3-ph induction motors.
- 4 Demonstrate the main characteristics and performance of 3-ph induction motors.
- 5 Explain the construction, theory of operation, and equivalent circuit of 3-ph induction motors.

b.Intellectual Skills::

- Choose among different solution alternatives.
- 2 Evaluate the performance and starting methods of 1-ph induction motors.
- 3 Analyze speed control of 3-ph Induction Motors.
- 4 Analyze starting methods of 3-ph Induction Motors.

5 -	Evaluate the performance and operating conditions of 3-ph induction motors.			
6 -	Solve problems related to theory of operation, and equivalent circuit of 3-ph induction motors.			
c.Professional and Practical Skills: :				
1 -	1 - c2. Perform the required experiments to get the load characteristics of 1-ph induction motors.			
2 -	c1. Perform the required experiments to get the load characteristics of 3-ph induction motors.			
d.General and Transferable Skills: :				
1 -	Manage tasks, time, and resources effectively.			
2 -	- Communicate effectively.			
3 -	Work in stressful environment and within constraints.			
4 -	Work coherently and successfully as a part of a team in the Lab.			

Course Topic And Contents :				
Topic	No. of hours	Lecture	Tutorial / Practical	
Revision of 3-ph circuits, magnetic circuits and 1-ph Transformers.	10	6	4	
3-ph Induction Motors: Construction: stator windings of AC machines, Rotor types.	10	6	4	
theory of operation, equivalent circuit, (voltage, current, power and torque) equations, and load characteristics.	15	9	6	
Analysis using circle diagram.	5	3	2	
Experimental determination of IM parameters.	5	3	2	
Starting and speed control of Induction Motors.	10	6	4	
Double cage IM.	5	3	2	
1-ph Induction Motors: Construction, theory of operation, equivalent circuit, (voltage, current, power and torque) equations, and load characteristics.	10	6	4	
Testing of induction motors.	5	0	5	

Teaching And Learning Methodologies:	
Interactive Lecturing	
Discussion	
Problem solving	
Report	
Experiential learning	

Course Assessment :					
Methods of assessment	Relative weight %	Week No	Assess What		
″ÁFinal exam	40.00				
Mid- Exam I	15.00				
Mid- Exam II	15.00				
o Assignment	10.00				
o Lab	10.00				

o Quizzes 10.00

Recommended books:

- 1. Chapman, S. J., % lectric Machinery fundamentals Hamber Graw Hill Co., 5th edition, 2006 (Text Book).
- 2. M. E. El-Hawary, "Principles of Electric Machines with Power Electronic Applications", Wiley-IEEE Press, 2nd Edition, 2002.
- 3. Theodore Wildi, "Electric Machines, Drives and Power Systems", Prentice Hall, 6th Edition, 2006.
- 2. "Principles of Electric Machines with Power Electronic Applications", M. E. El-Hawary, McGraw-Hill, most recent edition.
- 3. "Electric Machines, Drives and Power Systems", Theodore Wildi, Prentice Hall, most recent edition.