

Faculty of Engineering & Technology

Power Quality

Information:

Course Code: EPR 533 Level: Undergraduate Course Hours: 3.00- Hours

Department: Specialization of Electrical Power Engineering

Instructor Information:		
Title	Name	Office hours
Professor	Almoataz Youssef Abdelaziz Mohamed Abdelmaguied	8
Assistant Lecturer	Ahmed Moreab Hussien Mohamed	2

Area Of Study:

- Aunderstand the fundamentals of power quality.
- "ÁKnow the main terminology and standards of power quality."
- *Apply different techniques of solving power quality problems.
- **Mow the measuring devices and methods for the power quality problems.

Description:

Power Quality Fundamentals: Definition, Terminology, Criteria, Standards. Voltage Sags: Characteristics, Mitigation, Voltage Fluctuations and Lamp Flicker. Power Frequency Disturbance: Disturbances, Low Frequency Disturbances, Voltage Tolerance Criteria - ITIC Graph. Electrical Transients: Modeling, Types and Causes. Harmonics: Voltage and Current Harmonics, Individual and Total Harmonic Distortion. Grounding and Bonding: NEC Requirements, Earth Resistance Tests, Earth Ground Grid Systems, Power Ground System. Power Factor: Power Factor Improvement, Synchronous Condensers, Static Var Compensators, Advantages of Power Factor Correction. Electromagnetic Interference; Electrical and Magnetic Fields, Power Frequency Fields, High Frequency Interference, EMI Terminology. Measuring and Solving Power Quality Problems: Measurement Devices, Test Locations, and Duration.

Course outcomes :

a. Knowledge and Understanding: :

- 1 a1- Summarize the concepts and basic principles of power quality.
- 2 a2- Describe solutions for different power quality problems, especially harmonic nature and power factor corrections, in various ways: verbally, graphically, and using simulation.
- 3 a3- Describes computer modeling, simulation, rendering and presentation of power quality items techniques.
- 4 a4- Explain the customer needs and requirements such as those regarding voltage levels and its related quality.

b.Intellectual Skills::

- 1 b1- Express power quality ideas in structural and mathematic terms so that quantities evaluation is facilitated.
 - 2 b2- Apply different alternative solutions for grounding and bonding methods.
 - 3 b3- Decide the choice among different solution alternatives for power factor enhancement.
 - 4 b4- Evaluate obtained results of using power quality devices such as harmonic filters.

c.Professi	onal and Practical Skills: :			
1 -	Ability to integrate knowledge and understanding of mathematics, information technology, design and engineering concepts to design and plan electrical systems to solve problems.			
2 -	Conduct research and collect data from different resources.			
3 -	Use appropriate techniques for representation.			
d.General	and Transferable Skills: :			
1 -	d1- Write reports in accordance with standard scientific guidelines.			
2 -	d2- Work in a self-directed manner.			
3 -	d3- Work coherently and successfully as a part of a team.			
4 -	d4- Carry out solutions for problems using innovative thinking.			

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction	5	3	2
Power Quality Fundamentals: Terms and Definitions	15	9	6
Voltage Sags and Interruptions	10	6	4
Electrical Transients	11	6	5
Voltage Regulation	10	6	4
Power Factor Improvement	10	6	4
Harmonics	14	9	5

Teaching And Learning Methodologies:

Interactive Lecture

Small Group Discussion

Public Group Discussion

						
Methods of assessment	Relative weight %	Week No	Assess What			
″ÁFinal exam	40.00		to assess the performance of students during the course			
o Mid-Term exams	30.00					
o Quizzes, class participation, reports, and Assignments	30.00					

Course Notes:

No course notes are required

Recommended books:

- 1- R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, £lectrical Power Systems Qualityo Edition, McGraw Hill, 2012.
- 2- C. Sankaran, Power QualityŒCRC Press, 2002. 3- Alexander Kusko and Marc T. Thompson, Power Quality in Electrical SystemsÆMcGraw Hill, 2007.