

# Faculty of Engineering & Technology

### **Power Quality**

Information :

| Course Code : | EPR 533 | Level | : | Undergraduate | Course Hours : | 3.00- Hours |
|---------------|---------|-------|---|---------------|----------------|-------------|
|               |         |       | _ |               |                |             |

**Department :** Specialization of Electrical Power Engineering

#### Instructor Information :

| Title              | Name                                            | Office hours |
|--------------------|-------------------------------------------------|--------------|
| Professor          | Almoataz Youssef Abdelaziz Mohamed Abdelmaguied | 8            |
| Assistant Lecturer | Ahmed Moreab Hussien Mohamed                    | 2            |

### Area Of Study :

*Aunderstand the fundamentals of power quality.* 

"Áknow the main terminology and standards of power quality.

Apply different techniques of solving power quality problems.

"Know the measuring devices and methods for the power quality problems."

#### **Description :**

Power Quality Fundamentals: Definition, Terminology, Criteria, Standards. Voltage Sags: Characteristics, Mitigation, Voltage Fluctuations and Lamp Flicker. Power Frequency Disturbance: Disturbances, Low Frequency Disturbances, Voltage Tolerance Criteria - ITIC Graph. Electrical Transients: Modeling, Types and Causes. Harmonics: Voltage and Current Harmonics, Individual and Total Harmonic Distortion. Grounding and Bonding: NEC Requirements, Earth Resistance Tests, Earth Ground Grid Systems, Power Ground System. Power Factor: Power Factor Improvement, Synchronous Condensers, Static Var Compensators, Advantages of Power Factor Correction. Electromagnetic Interference; Electrical and Magnetic Fields, Power Frequency Fields, High Frequency Interference, EMI Terminology. Measuring and Solving Power Quality Problems: Measurement Devices, Test Locations, and Duration.

#### Course outcomes :

### a.Knowledge and Understanding: :

| 1 -          | a1- Summarize the concepts and basic principles of power quality.                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 -          | a2- Describe solutions for different power quality problems, especially harmonic nature and power factor corrections, in various ways: verbally, graphically, and using simulation. |
| 3 -          | a3- Describes computer modeling, simulation, rendering and presentation of power quality items techniques.                                                                          |
| 4 -          | a4- Explain the customer needs and requirements such as those regarding voltage levels and its related quality.                                                                     |
| o.Intellectu | al Skills: :                                                                                                                                                                        |
| 1 -          | b1- Express power quality ideas in structural and mathematic terms so that quantities evaluation is facilitated.                                                                    |
| 2 -          | b2- Apply different alternative solutions for grounding and bonding methods.                                                                                                        |
| 3 -          | b3- Decide the choice among different solution alternatives for power factor enhancement.                                                                                           |
| 4 -          | b4- Evaluate obtained results of using power quality devices such as harmonic filters.                                                                                              |



## c.Professional and Practical Skills: :

| 1 -                                  | Ability to integrate knowledge and understanding of mathematics, information technology, design and engineering concepts to design and plan electrical systems to solve problems. |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2 -                                  | Conduct research and collect data from different resources.                                                                                                                       |  |  |
| 3 -                                  | Use appropriate techniques for representation.                                                                                                                                    |  |  |
| d.General and Transferable Skills: : |                                                                                                                                                                                   |  |  |
| 1 -                                  | d1- Write reports in accordance with standard scientific guidelines.                                                                                                              |  |  |
| 2 -                                  | d2- Work in a self-directed manner.                                                                                                                                               |  |  |
| 3 -                                  | d3- Work coherently and successfully as a part of a team.                                                                                                                         |  |  |
| 4 -                                  | d4- Carry out solutions for problems using innovative thinking.                                                                                                                   |  |  |
|                                      |                                                                                                                                                                                   |  |  |

## **Course Topic And Contents :**

| Торіс                                             | No. of hour | s Lecture | Tutorial / Practical |
|---------------------------------------------------|-------------|-----------|----------------------|
| Introduction                                      | 5           | 3         | 2                    |
| Power Quality Fundamentals: Terms and Definitions | 15          | 9         | 6                    |
| Voltage Sags and Interruptions                    | 10          | 6         | 4                    |
| Electrical Transients                             | 11          | 6         | 5                    |
| Voltage Regulation                                | 10          | 6         | 4                    |
| Power Factor Improvement                          | 10          | 6         | 4                    |
| Harmonics                                         | 14          | 9         | 5                    |

| Teaching And Learning Methodologies : |  |  |
|---------------------------------------|--|--|
| Interactive Lecture                   |  |  |
| Small Group Discussion                |  |  |
| Public Group Discussion               |  |  |

# Course Assessment :

| Methods of assessment                                    | Relative weight % | Week No | Assess What                                             |
|----------------------------------------------------------|-------------------|---------|---------------------------------------------------------|
| ″∕Æinal exam                                             | 40.00             |         | to assess the performance of students during the course |
| o Mid-Term exams                                         | 30.00             |         |                                                         |
| o Quizzes, class participation, reports, and Assignments | 30.00             |         |                                                         |

## Course Notes :

No course notes are required

### **Recommended books :**



1- R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, *Electrical Power Systems Quality* Brd Edition, McGraw Hill, 2012.

2- C. Sankaran, Power Quality CRC Press, 2002.
3- Alexander Kusko and Marc T. Thompson, Power Quality in Electrical Systems MarcGraw Hill, 2007.