

Faculty of Engineering & Technology

Special Electrical Machines

Information :

Course Code : EPR 542	Level	:	Undergraduate	Course Hours :	3.00- Hours

Department : Specialization of Electrical Power Engineering

Instructor Information :

Title	Name	Office hours
Professor	Hany Mohamed Hasanien Mohamed	3
Professor	Hany Mohamed Hasanien Mohamed	3
Assistant Lecturer	Mohamed Abdallah Mahmoud Shaheen	1

Area Of Study :

Upon successful completion of the course, the student should be able to:

ADevelop the students' knowledge about the construction, theory of operation, equivalent circuit, develop voltage, current, power and torque equations, and basic characteristics of single- and two-phase induction motors.
 ADevelop the students' knowledge about the construction, theory of operation, and basic characteristics of universal motors, control motors, and variable speed synchronous motor drive systems.

*A*Develop the students' knowledge about the construction, theory of operation, equivalent circuit, develop voltage, current, power and torque equations, and basic characteristics of: reluctance; permanent magnet; stepper, and brushless dc motors;

*"*Arain students to perform experiments on performance of the previous machines."

Description :

two-phase induction motors, windings and connections. Methods of starting of single-phase induction motors: Split phase motors; Capacitor-start motors; Two-value capacitor motors. Shaded pole motors: Construction and operation. Universal motors. Control motors. Synchronous motors, variable speed drive system. Reluctance motors; Permanent magnet motors. Stepper motors. Selecting motors for required operations.

Course outcomes :

a.Knowledge and Understanding: :

b.Intellectu	
5 -	Develop equivalent circuit, and voltage, current, power and torque equations, and basic characteristics of reluctance, permanent magnet, stepper, and brushless dc motors.
4 -	Demonstrate the theory of operation, equivalent circuit, and characteristics of synchronous motors, and performance of variable speed synchronous motor drive systems.
3 -	Demonstrate the construction theory of operation, equivalent circuit, and characteristics of universal motors, control motors, and servo motors.
2 -	Describe the starting methods and speed control of single-phase induction motors.
1 -	Demonstrate the construction theory of operation, equivalent circuit, and characteristics of single- and two-phase motors

2 -	Analyze operating conditions of single- phase and two-phase induction motors.	
3 -	Evaluate the performance of universal motors, control motors, and servo motors.	
4 -	Evaluate the performance of synchronous motors, and variable speed synchronous motor drive systems.	
5 -	Evaluate the performance of reluctance, permanent magnet, stepper, and brushless dc motors	
c.Professio	onal and Practical Skills: :	
1 -	MATLAB simulations or research report on a topic assigned by the course instructor.	
2 -	Implement an experimental set-up to evaluate the load characteristics a single-phase induction motor.	
d.General	and Transferable Skills: :	
1 -	Work coherently and successfully as a part of a team in the Lab.	
2 -	Work in stressful environment and within constraints.	
3 -	Communicate effectively.	

4 - Manage tasks, time, and resources effectively.

Course Topic And Contents :

Course Topic And Coments .			
Торіс	No. of hours	Lecture	Tutorial / Practical
Revision of 3-ph inductiom motors and synchronous machines.	4	3	1
Construction, theory of operation, equivalent circuit, and characteristics of single-phase and two-phase motors.	4	3	1
Starting methods and speed control of single-phase induction motors.	8	6	2
Construction, theory of operation, equivalent circuit, and characteristics of universal motors, control motors: DC and AC tachometers, and servo motors.	4	3	1
Characteristics and performance of synchronous motors and variable speed synchronous motor drive systems.	8	6	2
Reluctance motors: Construction, theory of operation, equivalent circuit, governing equations, and characteristics.	8	6	2
Permanent magnet motors: Construction, theory of operation, equivalent circuit, governing equations, and characteristics.	8	6	2
Stepper motors: Construction, theory of operation, equivalent circuit, governing equations, and characteristics.	8	6	2
Brushless dc motors: Construction, theory of operation, equivalent circuit, governing equations, and characteristics.	4	3	1
Testing of single-phase induction motor.	4		4

Teaching And Learning Methodologies : Interactive Lecturing Discussion Problem solving Report Experiential learning

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
″ÅFinal exam	40.00			
o assignment	10.00			
o In Class Quizzes	10.00			
o Mid-Term exams	30.00			
o Report(s)/computer Lab	10.00			

Recommended books :

Chapman, S. J., Selectric Machinery fundamentals AMCGraw Hill Co., 5th edition, 2006 (Text Book).
 M. E. El-Hawary, "Principles of Electric Machines with Power Electronic Applications", Wiley-IEEE Press, 2nd Edition, 2002.

3. Theodore Wildi, "Electric Machines, Drives and Power Systems", Prentice Hall, 6th Edition, 2006.