

## Faculty of Engineering & Technology

### **Robot Control**

#### Information:

Course Code: MKT 472 Level: Undergraduate Course Hours: 3.00- Hours

**Department:** Specialization of Mechatronics Engineering

# Instructor Information : Title Name Office hours Professor Osama Esmail Mahmoud Esmail 1 Lecturer MOHAMED ABDELBAR SHAMSELDIN ALY 9 Teaching Assistant Donia Waheed Mohamed Abdelmonem Saleem

### Area Of Study:

This courseaims to:

Antroduce different methods for path planning for robot manipulators.

AExplain different methods for controlling robot manipulators, including Fuzzy

Ænrich the students knowledge about control of manipulators.

ATrain students to design, simulate, build, and test a robot manipulator.

## **Description:**

| Course outcomes :                |
|----------------------------------|
| a.Knowledge and Understanding: : |

- 1 Define different terms used in classic and Fuzzy Logic Control.
- 2 List different methods for path planning of manipulators.
- 3 Explain Different methods for control robot manipulators.
- 4 Describe manipulator dynamics and computer vision.

## b.Intellectual Skills: :

- 1 Analyse manipulators' dynamics.
- 2 Calculate parameters for a smooth trajectory, and optimum parameters for classic and fuzzy controllers of manipulators.
- 3 Select suitable parameters for robot controllers.
- 4 Analyse the results of different controllers for manipulators.

### c.Professional and Practical Skills: :

1 - Analyse lab experimental results of control manipulators with different control methods.



| 2 - | Use the suitable hardware components and software for drafting and implementing a simple manipulator.                                                                                                      |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3 - | Apply knowledge of mathematics, science, information technology, design and engineering practice integrally to identify, formulate and solve engineering and field problems related to Robot manipulators. |  |  |  |  |
| 4 - | Prepare and present technical reports.                                                                                                                                                                     |  |  |  |  |

# d.General and Transferable Skills::

1 - Search for information and engage in life-long self-learning.

| Course Topic And Contents :                     |              |         |                      |  |  |
|-------------------------------------------------|--------------|---------|----------------------|--|--|
| Topic                                           | No. of hours | Lecture | Tutorial / Practical |  |  |
| Path and trajectory planning                    | 10           | 4       | 6                    |  |  |
| Manipulator dynamics; Independent joint control | 8            | 4       | 4                    |  |  |
| Force control                                   | 8            | 4       | 4                    |  |  |
| Geometric nonlinear control                     | 8            | 4       | 4                    |  |  |
| Computer vision; Visual servo control           | 10           | 6       | 4                    |  |  |
| Fuzzy control                                   | 8            | 4       | 4                    |  |  |
| Robot control system design                     | 8            | 4       | 4                    |  |  |

# **Teaching And Learning Methodologies:**

Interactive Lecturing

Problem solving

**Experiential learning** 

Discussion

Project

Research

| Course Assessment :                   |                   |         |             |  |  |  |
|---------------------------------------|-------------------|---------|-------------|--|--|--|
| Methods of assessment                 | Relative weight % | Week No | Assess What |  |  |  |
| Assignments, Participation, & Quizzes | 20.00             |         |             |  |  |  |
| Final Exam                            | 40.00             | 16      |             |  |  |  |
| First Midterm Exam                    | 15.00             | 6       |             |  |  |  |
| Project.                              | 10.00             |         |             |  |  |  |
| Second Midterm Exam                   | 15.00             | 11      |             |  |  |  |

# **Recommended books:**

S. B. Niku, "Intruduction to Robotics, analysis, control, applications". John Wily and Son, 2nd edition

