

Faculty of Engineering & Technology Graduation Project I

Information:

Course Code: MKT 500 Level : Undergraduate Course Hours : 2.00- Hours

Department: Specialization of Mechatronics Engineering

Instructor Information :		
Title	Name	Office hours
Professor	Hassan Ahmed Ahmed Mohamed Metered	
Associate Professor	Hassan Mohamed Shams Eldin Elsayed Eleashy	
Lecturer	Mohamed Ali Mohamed Elsayed Torad	
Lecturer	Anas Mohamed Abdelrahman Ali	
Lecturer	Abdel Moneim Mohamed El Mahdi Ismail	
Lecturer	Mohamed Ahmed Mahmoud Karali	
Lecturer	Arafa Soliman Sobh Khalil Arafa	
Lecturer	MOHAMED ABDELBAR SHAMSELDIN ALY	5
Lecturer	Amr Mohamed Metwally Ismaiel	
Lecturer	SAMAH ELSAYED ELMETWALLY ELKHATIB	
Teaching Assistant	Amira Khaled Hasan Mohamed Elkodama	
Teaching Assistant	Fady Ayman Mohamed Naguib Mahmoud Noah	
Teaching Assistant	Mohamed Samir Ahmed Mohamed	2
Teaching Assistant	Mohamed Ashraf Fawzy Mohamed	
Teaching Assistant	Osama Ahmed Ibrahim Mohamed Montaser	

Area Of Study:

Ántroduce critical thinking and scientific methodology in problem solving. ÁFocusing on problem objective, make wide review of previous art, evaluate and compare previous solutions.

Arrain students to design and simulate a new Mechatronics system.

Description:

Conceptual Design: Students follow systematic design approach, apply project planning and scheduling techniques, devise analytical, computational and/or experimental solutions, and design and build their own test-rig. Students attend technical seminars and learn to interact with speakers and at the end of the semester; they are required to present a seminar on the project status, progress and future work.

_					_				
"	\sim		200	\sim	+	\sim	m	es	•
u	U	u	36	· ·	uL	u	/III	C 3	

a.Knowled	ge and Understanding: :
1 -	Knowledge of the details and practices of critical thinking and brain storming.
2 -	Define and defend the society need of project idea based on search and statistics locally and internationally.
3 -	Apply the mechatronics design approach and elements to the design of new project system
4 -	Know different previous and possible solutions to solve the project needs.
5 -	Describe the control algorithm for the operation of new mechatronics project
b.Intellectu	ial Skills: :
1 -	Analyse the different computing devices and architectures.
2 -	Calculate the suitable motor size in terms of speed and torque for a given application.
3 -	Select the proper actuators and sensors in the project
4 -	Analyse the results of simulation models for the project mechanical, electrical, and control systems.
c.Professio	onal and Practical Skills: :
1 -	Use the suitable hardware components and software for implementing a mechatronics system.
2 -	Make decision for component or process selection based on rich information from searching the internet.
3 -	Ability to program computing device such as arduino or Rasberry Pi for mechatronics project.
4 -	Prepare a technical presentation report for a given task.
5 -	Prepare technical report and poster describing project details
d.General	and Transferable Skills: :
1 -	Work in stressful environment and within constraints of time and resources.
2 -	Work inside a team.
3 -	Effectively manage tasks, time, and resources
4 -	Search for information and engage in life-long self-learning discipline through answering the list of questions arising during brain storming sessions.

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Critical thinking and brain storming practices	4	0	4
Mechatronics design process	4	0	4
Defining the need of society to project	8	0	8
Feasibility study of the product from project	8	0	8
Literature survey of previous work (brain storming)	8	0	8
Alternative solution evaluation	8	0	8
Communication skill fundamentals (Report preparation)	8	0	8
Preparation of presentation and poster design	8	0	8
Rehearsal on presentation skills	4	0	4

Teaching And Learning Methodologies :	
Interactive Lecturing	
Problem solving	

Discussion (Brain storming)

Experiential learning

Project

Collaborative Research

Course Assessment:

Methods of assessment	Relative weight %	Week No	Assess What
1st mid term	10.00	6	
2nd mid term	10.00	11	
Final Exam	40.00	16	
Oral Exam	25.00	16	
Participation and presentations	15.00		

Course Notes:

Lecture notes on the course Moodle page, FUE website

Recommended books:

1. Text Book:

MIT Guide for Science and Engineering Communication, Zimmerman and Paradise, MIT press. Second edition.

2- Recommended Readings:

Critical Thinking and Innovation

Mechatronics Handbook.