

Faculty of Engineering & Technology

Differentiation with Applications and Algebra (Math 1)

Information :

Course Code :	MTH 111	Level	:	Undergraduate	Course Hours :	3.00- Hours

Department : Faculty of Engineering & Technology

Instructor Information :

Title	Name	Office hours
Lecturer	Basma Magdy Ahmed Mohamed	12
Teaching Assistant	Mohamed Fathy Salem Mohamed	

Area Of Study :

Ænrich studentsdískills about the concepts of differential calculus and linear algebra. ÆDevelop studentsdímathematical skills for the rules of differentiation and linear algebra to the solution of engineering problems.

Description :

Concepts of a function, limits, continuity, and differentiation. Rules of Differentiation. Differentiation of algebraic and transcendental functions and their Inverses. Application of derivatives. Taylor and Maclaurin expansion. Extrema of a function. Asymptote lines, Curve Sketching. Higher derivatives and Leibnitz Rule. Indeterminate forms and L'Hopital's rule. Algebra of determinants and matrices, Solution of linear systems. Gauss - Jordan Method, Iterative Methods. Eigenvalues and Eigenvectors.

Course outcomes :

a.Knowledge and Understanding: :

1 -	Explain the concepts of function, limit, properties of functions, continuity, inverse of algebraic functions, rules of differentiation, differentiation of algebraic and transcendental functions with inverses, and curve sketching.		
2 -	Explain the higher derivatives of functions, Leibnitz rule, curve sketching, and Taylor and Maclaurien series & polynomials with absolute error estimation.		
3 -	Identify various forms of indeterminate quantities, and L'Hopital rule application for certain types of Indeterminate forms		
4 -	Recognize determinants, matrix algebra, and direct and iterative methods for the solution of algebraic linear systems.		
5 -	Illustrate the eigenvalues and the corresponding eigenvectors of a matrix		
b.Intellectual Skills: :			

1 -	Analyze the theorems, concepts, methods, and rules of differentiation for algebraic and transcendental functions.
2 -	Apply Taylor theorem for the approximation of functions, and L'Hopital rule for Indeterminate quantities evaluations.

http://www.fue.edu.eg

3 -	Apply matrix algebra, inverse matrix, reduced matrix, to the solution of linear system of algebraic equations.		
4 -	Solve linear system of equations (homogeneous and non-homogeneous) by using Gauss - Jordan method, and other direct methods, or by any convenient iterative methods.		
5 -	Apply matrix algebra in finding eigenvalues and eigenvectors.		
c.Professional and Practical Skills: :			
1 -	Perform curve sketching to represent different engineering systems.		
d.General and Transferable Skills: :			
1 -	Communicate effectively		

Course Topic And Contents :

Торіс	No. of hours	Lecture	Tutorial / Practical
Concept of a function, limits, properties, Continuity, and Differentiation.	5	1	1
Rules of Differentiation. Chain rule, Implicit Differentiation. Differentiation of parametric functions.	5	1	1
Transcendental functions and differentiation. Trigonometric and Inverse Trigonometric Functions. Exponential and Logarithmic Functions. Hyperbolic and Inverse Hyperbolic functions	5	1	1
Application of derivatives. Taylor and Maclaurin expansion, polynomial, and series. Extrema of a function. Asymptote lines. Curve Sketching.	10	2	2
Higher derivatives and Leibnitz rule. Indeterminate Forms and L 'Hopital's Rule	10	2	2
Definitions and properties of determinants and matrices, Algebra of Matrices. Inverse Matrix.	5	1	1
Reduced matrix. Rank of a Matrix. Solution of linear systems using inverse Matrix, and Cramer's Rule	10	2	1
Gauss - Jordan Method. Homogeneous and non-homogeneous systems. Square and rectangular systems	5	1	1
Solution of linear algebraic systems by Iterative Methods. Jacobi method, Seidel Method	5	1	1
Solution of linear algebraic systems by Iterative Methods. Jacobi method,	5	1	1
Eigenvalues and Eigenvectors of a matrix.	5	1	1
Eigenvalues and Eigenvectors of a matrix.	5	1	1

Teaching And Learning Methodologies :

Interactive Lecturing

Discussion

Problem-based Learning

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
Final Exam	40.00			
Mid- Exam 1I	25.00			
Mid- Exam I	25.00			
Performance	10.00			

Course Notes :

Handouts on the Moodle.

Recommended books :

Æarl W. Swokowski, "Calculus with Analytic Geometry, Prindle, Weber & Schmidt. Æeter V. O'Neil, "Advanced Engineering Mathematics". Áarson, R, Edwards, B & Falvo, D 2004, Elementary linear algebra, 5th edn, Houghton