

Faculty of Computers and Information Technology

Physics

Information:

Course Code: PH101 Level: Undergraduate Course Hours: 3.00- Hours

Department : Faculty of Computers and Information Technology

Instructor Information:		
Title	Name	Office hours
Lecturer	Mahmoud Hanafy Mahmoud Mohamed Nassar	3
Lecturer	Mahmoud Hanafy Mahmoud Mohamed Nassar	3
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA	
Assistant Lecturer	Mahmoud Ahmed Nasr Kamal Abdo Mostafa	
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA	
Assistant Lecturer	Nada El Said Abdallah Hassan Salem	4
Teaching Assistant	Shahd Muhammed Anwer Muhammed Hamed	
Teaching Assistant	Romisaa Gamal Mahmoud Abdelrhman	2
Teaching Assistant	Abdelrahman Adel Abdullah Abdelghany Kandil	
Teaching Assistant	Romisaa Gamal Mahmoud Abdelrhman	2
Teaching Assistant	Omar Salah Abdelmoniem Ghareeb	
Teaching Assistant	Youmna Elsayed Abd Elalem Mohamed Sayed Ahmed	

Area Of Study:

Apply the basic concepts and theories of physics.

Combine and evaluate different tools and facilities to study physics.

Compare, evaluate and select methodologies from range of techniques to solve physics problems.

Deal with the individual, social and environmental implications of the application of physics.

Use effectively communication skills.

Description:

The objectives of the course is to provide the students with basic foundation on basics elements of Physics devices including concepts of Vectors, Coulomb's Law, Electrical Field, Electrical potential Energy, Electrical Current and Resistance, Kirchoff's Laws, Magnetic field and force, Ampere's Law, Quantization, Black body radiation, Photo electric effect, x-ray production, Compton scattering, and Bohr Model of Hydrogen Atom

Course outcomes:

a. Knowledge and Understanding: :

- 1 Discuss fundamental concepts and theories related to physics
- 2 Describe the methodologies and practices used to solve the physics problems

Discuss specifications for a give problem solution.				
b.Intellectual Skills: :				
Analyze the limitations and constrains for physics development				
Implement the solutions of physics in academic disciplines.				
c.Professional and Practical Skills: :				
Run computing methods to verify different physics laws				
Use different techniques to understand the nature of electric field, electric potential, and electric potential energy				
Realize the circuit analysis concepts to apply Kirchhoffs' Laws				
d.General and Transferable Skills: :				
1 - Work in a team effectively and efficiently considering time and stress management				
Utilize effectively general computing facilities				
. Appreciate continuous professional development and lifelong learning				
ABET Course outcomes :				
Apply the basic concepts and theories of physics.				
Combine and evaluate different tools and facilities to study physics.				
3 - Compare, evaluate and select methodologies from range of techniques to solve physics problems.				

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Introduction to Vectors	4	2	2
Coulomb's law	4	2	2
Electrical field	4	2	2
Electric potential, Electric potential Energy	4	2	2
Capacitors	4	2	2
Electric current, Resistance	4	2	2
Kirchhoffs' Laws	4	2	2
Magnetic field and force	4	2	2
Mid-Term Exam	2		
Ampere's Law	4	2	2
Quantization, Black body radiation, Photo electric effect	4	2	2
x-ray production, Compton scattering	4	2	2
Bohr Model of Hydrogen atom	4	2	2
Final Exam	2		

Teaching And Learning Methodologies :		
Interactive Lectures including discussion		
Tutorials		

Practical Lab Sessions

Self-Study (Project / Reading Materials / Online Material / Presentations)

Problem Solving

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Assignments	5.00	4	
Final Exam	40.00	14	
Midterm Exam (s)	20.00	9	
Others (Participation)	20.00	1	
Quizzes	10.00	5	
Team Work Projects	5.00	12	

Course Notes:

An Electronic form of the slides of the Lectures is available on the Students Learning Management System (Moodle)