

Faculty of Engineering & Technology

Physics 2

Information:

Course Code: PHY 132 Level: Undergraduate Course Hours: 4.00- Hours

Department: Faculty of Engineering & Technology

Instructor Information :					
Title	Name	Office hours			
Professor	Abdel Nasser Mahmoud Tawfik Aly	1			
Assistant Lecturer	Nada El Said Abdallah Hassan Salem	8			
Assistant Lecturer	Ahmed Abdelfattah Abdelaziz Abdelfattah				
Teaching Assistant	Mohamed Fathy Salem Mohamed				
Teaching Assistant	Noura Abdeltawab Mohamed Abdelhamid Elgindy				

Area Of Study:

The objective of this second physics course for the engineering students is to develop their ability to understand electricity and magnetism topics in classical physics and to analyze and logically solve problems of engineering applications based on these topics. On successful completion of these courses the engineering student will be able to:

- 1. Know and understand all old classical physics that is applied up to today.
- 2.Learn electricity as a single topic.
- 3.Learn magnetism as a single topic.
- 4. Solve problems about these two topics.
- 5. Understand at the end that electricity and magnetism are connected into one topic (Electromagnetic Theory).

Description:

Coulomb's Law, Electric Field and Flux, Gauss' Theorem in electrostatics and its Applications, Electric Potential and electric potential energy, Electrodynamics, electric current, electric current density, Ohms law and Kirchhoff's rules to solve an electric circuit-Magnetic field and flux, Gauss' law in magnetism Force due to a

moving charge and due to an Electric current, Ampere's circuital Law, Faraday's Law for Induction, Maxwell's equation in integral form and their physical meaning for electromagnetism

Course outcomes:

a. Knowledge and Understanding: :

1 -	Electric force and field.	
2 -	Gaussos law for electrostatics and its different applications.	
3 -	Electric potential and electric potential energy.	
4 -	Capacitors and dielectrics.	
5 -	5 - Electric circuit, electric current and ohmos law.	
6 -	Magnetostatic force and field and Amperes circuital law	

7 -	Magnetodynamics and Faradayos Law for induction.				
b.Intellectu	ial Skills: :				
1 -	Deal with physical problems.				
2 -	Think logically and creatively.				
c.Professio	onal and Practical Skills: :				
1 -	Gaining skills in identifying and using the different physical parameters related to this course, and perform experiments related to these topics.				
2 -	Gaining skills in constructing the physical laws and be able to solve the physical problems.				
d.General	and Transferable Skills: :				
1 -	Work effectively in team.				
2 -	Develop skills related to creations thinking, problem solving, oral and written presentation, and team work.				

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Electrostatic force and field	10	6	4
Gausson Law for electrostatics	10	6	4
Electric potential and electric potential energy	7	3	4
Capacitors and dielectrics	7	3	4
Electric current and Ohmos Law	6	2	4
Electric circuits	6	2	4
Magnetic force due to moving charge	6	2	4
Magnetic force due to current carrying wire	7	3	4
Ampereos Law	6	2	4
Gaussos Law for magnetism	10	6	4
Faradayos Law	6	2	4
Applications for Faradays Law	6	2	4
Self and Mutual inductance	12	4	8
Revision	6	2	4

Course Assessment :						
Methods of assessment	Relative weight %	Week No	Assess What			
Final Exam	40.00	16				
Lab	20.00	1				
Mid-Term Exam 1	15.00	6				
Mid-Term Exam 2	15.00	11				
Semester Work	10.00	1				

Course Notes:

handout and notes

Recommended books:

1ÈCollege physics-ÉGiambattista and Richardson, Mac gramttill, 3rd edition, 2010. 2ÈRhysics for scientists and engineers-ÉSerway, Thomson Brookes/Cok., 8th edition, 2011.