

Faculty of Engineering & Technology

Physics 3

Information:

Course Code: PHY 231 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Structural Engineering & Construction Management

Instructor Information:

Title	Name	Office hours
Lecturer	AHMED MOHAMED ALI ASHOUR AHMED	21
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA	4

Area Of Study:

By the end of the course the students will be able to:

- "Ænrich students' knowledge about Oscillations, waves, optics and Modern physics.
- "Ænrich studentsoknowledge about atomic structure and crystal systems."
- Árain students to apply studied topics on application related to Structural engineering.

Description:

Ideal oscillation: representation, Energy and applications. Damped and forced oscillation. Classification of waves, Mechanical transverse wave, Sound waves: types, Speed and Intensity, Doppler effect. Superposition of waves, Standing Waves in string, rods and membranes. Light nature, Reflection, Refraction, Huygen's Principle. Interference: Conditions, Young's double slit, Intensity distribution, phase change. Diffraction: single and double slit patterns, diffraction grating. Polarization. Max-Planck's principle, photoelectric effect, the wave properties of particles, the quantum particle, uncertainty Heisenberg's principle. Hydrogen atom: Bohr's model, solids classification and crystalline structure. X-ray: production, spectral analysis, application.

Course outcomes:

a. Knowledge and Understanding: :

- 1 a1- Explain and describe the types of oscillations and waves..
- 2 a2- Define optics and modern physics each as a single topic.
- 3 a3- Describe and define geometrical and physical optics.
- 4 a4- Explain the comparative view between classical and modern physics.
- 5 a5- Describe the atomic physics and atomic structure.

b.Intellectual Skills::

- 1 b1- Analyze different physical quantities
- 2 b2- Predict the action/outcome of different bodies, systems.
- 3 b3- Justify the governing laws of oscillations, waves, Optics, modern and atomic physics.
- 4 b4- Think logically and creatively.

c.Professional and Practical Skills: :

- 1 c1- Measure the different physical parameters and perform experiments related to the studied topics.
- 2 c2- Adapting knowledge to solve engineering problems using scientific tools.

d.General and Transferable Skills::

- 1 d1- Work effectively in a team.
- 2 d2- Accomplish the skills which are related to creative thinking, problem solver.

Course Topic And Contents :				
Topic	No. of hours	Lecture	Tutorial / Practical	
Ideal oscillation: representation, Energy and applications. Damped and forced oscillation.	10	6	4	
Classification of waves, Mechanical transverse wave	12	6	6	
Sound waves: types, Speed and Intensity, Doppler effect	5	3	2	
Superposition of waves, Standing Waves in string, rods and membranes	10	6	4	
Light nature, Reflection, Refraction, Huygens' Principle	9	3	6	
Interference: Conditions, Young's double slit, Intensity distribution, phase change. Diffraction: single and double slit patterns, diffraction grating. Polarization	8	6	2	
Max-Planck's principle, photoelectric effect, wave properties of particles, the quantum particle, and uncertainty Heisenberg's principle.	10	6	4	
Hydrogen atom: Bohr's model, solids classification and crystalline structure. X-ray: production, spectral analysis, application	11	9	2	

Teaching And Learning Methodologies:

Discussion

Interactive Lecturing

Problem solving

Experimental learning

Cooperative learning

Course Assessment :			
Methods of assessment	Relative weight %	Week No	Assess What
Final Exam	40.00	16	
Lab	20.00	1	
Mid-Term Exam 1	15.00	6	
Mid-Term Exam 2	15.00	11	
Participation and performance	10.00	1	

Course Notes:

handout and notes

Recommended books:

- 1 ECollege physics-EGiambattista and Richardson, Mac gramttill, 3rd edition, 2010.

- 2党品hysics for scientists and engineers-党Serway, Thomson Brookes/Cok., 8th edition, 2011.
 a) % Gollege physics-党 Giambattista and Richardson, Mac gramttill, 3rd edition, 2010.
 b) % Physics for scientists and engineers 党 Erway, Thomson Brookes/Cok., 8th edition, 2010. 8th edition, 2011.