

Faculty of Engineering & Technology

Solid State Physics

Information:

Course Code: PHY 232 Level: Undergraduate Course Hours: 3.00- Hours

Department : Department of Electrical Engineering

Instructor Information:

Title	Name	Office hours
Lecturer	AHMED MOHAMED ALI ASHOUR AHMED	13
Assistant Lecturer	SHEROUK SOBHI ABDELSALAM FOUDA	

Area Of Study:

- "Ænrich studentsaknowledge about principles of classical, modern and quantum physics
- **Repare students to apply principles of quantum physics on atomic structure and semiconductors.
- Árain students to apply solid state physics and semiconductor on applications related to electrical engineering.

Description:

Classification of waves. Max-Planck's principle, photoelectric effect, the wave properties of particles, the quantum] & & \(\text{A}\) & \(\

<u>Course οι</u>	tcomes:		
a.Knowledge and Understanding: :			
1 -	Explain the basic theory of semiconductors and its applications.		
2 -	Describe the basic principles of atomic physics and crystalline structures.		
3 -	Explain fundamentals of quantum mechanics.		
4 -	Illustrate the basic principles of Max-Planck and photoelectric effect.		
5 -	Explain the basic principles of waves and its applications on light waves.		
b.Intellect	ual Skills: :		
1 -	Investigate the basic characteristics of semiconductors.		
2 -	Evaluate the main characteristics of atomic physics.		
3 -	Evaluate the expectation values of dynamic variables of electrons using quantum mechanics.		
4 -	Apply Max-Planck principle on photoelectric effect to determine the energy of electrons.		
c.Professi	onal and Practical Skills: :		
1 -	Sketch the diode characteristic curve.		
2 -	Test the characteristics of electrons using a magnetic field.		

3 -	Measure the parameters of photoelectric phenomenon.	
d.General and Transferable Skills: :		
1 -	Communicate effectively.	
2 -	Work effectively in a team.	

Course Topic And Contents :			
Topic	No. of hours	Lecture	Tutorial / Practical
Classification of waves	5	3	2
Max-Planck's principle, photoelectric effect	10	6	4
The wave properties of particles, the quantum particle, uncertainty Heisenberg's principle	5	3	2
Qic^{] ^cæqaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	5	3	2
Particle in an infinite/finite potential well, tunneling effect	5	3	2
Hydrogen atom: Bohr's model, quantum model and wave function equation in one dimension	10	6	4
Solids classification and crystalline structure	8	6	2
Energy bands, Fermi-Dirac distribution,	5	3	2
Carrier densities and transport, recombination and generation	5	3	2
Drift-diffusion model, Intrinsic and extrinsic semiconductors	5	3	2
PN junction: structure and principle of operation, diode current, reverse bias, diode as a circuit element.	12	6	6

Teaching And Learning Methodologies :	
Interactive Lecturing	
Discussion	
Problem solving	
Experimental learning	
Cooperative Learning	

Course Assessment :				
Methods of assessment	Relative weight %	Week No	Assess What	
Assignment	5.00			
Course Project	5.00			
Final Exam	40.00			
Lab.	10.00			
Mid-Term Exam 1	10.00			
Mid-Term Exam 2	20.00			
Participation	10.00			

Recommended books:

EAGollege Physics-EGiambattista and Richardson, Mac gramttill, 3rd edition.

- "Physics for Scientists and Engineers with Modern Physics" 9th Edition, Serway / Jewett.