A cost effective BLDC drive for the water pump application: Analysis, design, and experimentation

Mohamed Rizk Mohamed Elsayed Hamouda, Ahmed Abdelrahman; Mohamed Hamouda; Mohamed Youssef

Assistant Lecturers

Abstract

In this paper, novel magnetic calculations for a cost effective Brushless DC motor (BLDC) drive in a water pump application was carried out using finite element method (FEM). The sensorless control of (BLDC), which provides a minimal pulsating torque, was implemented using a simple two-layer printed circuit board (PCB). The new PCB provides power and control voltages, thus eliminates the need for a control battery. Simulation was performed using ANSOFT software and then being verified experimentally. The results have shown that the motor efficiency is 99% with an overall cost of $68 USD. Moreover, the wire to water (overall) efficiency is 56% compared to the market based of 37%.

Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2016 IEEE Conference and Expo - 2016, June