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Abstract

The optimization of steel structural systems for solar panel (SP) installations is crucial for improving energy efficiency and
reducing costs in renewable energy systems. This study focuses on optimizing the efficiency of steel structural systems for
SP using Artificial Intelligence and web-based applications. The study integrates Artificial Neural Networks (ANNs) with
Finite Element Model simulations utilizing STAAD Pro V8i SS6 software and MathWorks® MATLAB® software to cre-
ate effective SP support structures. The ANN model, trained on numerical analysis data from 29 sub-systems, can predict
optimal design configurations with an accuracy of 97.9%. Also, the authors created A web-based decision support system
(DSS) that allows users to input design criteria and retrieve optimized solutions, allowing users to input design criteria and
retrieve optimized structural solutions based on location, cost, and energy output. The study identifies one-column, two-
column, and four-column structural systems, comprehensively comparing energy production and structural weight. Results
indicate that System C (four-column) is the most efficient in energy output, while System A (one-column) is more suited for
smaller, low-cost installations. The ANN model demonstrates its ability to improve decision-making in structural design,
providing practical applications for both residential and commercial installations. The findings indicate that using this web
interface can significantly enhance energy output and reduce costs due to optimum weight structures in solar infrastructure.
This study highlights the significant impact that ANNs can have on improving renewable energy systems by enhancing the
efficiency and sustainability of future structural design advances.
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Introduction and background

Solar energy is increasingly becoming a key component
in the global shift toward renewable energy, particularly
as the demand for clean energy rises to mitigate climate
change. Steel structural systems play a pivotal role in sup-
porting large-scale solar panel installations, and optimiz-
ing these structures is essential for maximizing energy
output while minimizing costs. However, traditional meth-
ods of designing steel structures often fail to account for
the complex interplay between various design variables,
including weight, material strength, and environmental
factors such as wind and load pressures.

One of the primary challenges in the design of solar
energy systems is selecting the optimal steel structure that
balances material usage, cost, and energy efficiency. With
the increasing complexity of solar panel installations—
ranging from small residential setups to large commer-
cial arrays—designers must account for multiple factors
that influence the system’s structural integrity and energy
output. Additionally, geographic location is critical, as
environmental conditions such as wind loads and sunlight
exposure can vary significantly.

Sustainable energy systems play a major role for renew-
able energy systems in combating climate change. Renew-
able energy systems help lower greenhouse gas emissions
and promote economic growth [1]. Increasing production
and improving agricultural techniques require energy, par-
ticularly RE [2], which uses solar energy and land simul-
taneously. Due to climate change and the need for sustain-
able development, the global shift to renewable energy is
essential [3]. Solar Energy plays a significant role in this
transition as it is a renewable resource with huge potential
and the ability to scale [4]. A light steel frame building
is cost-effective, structurally robust, and environmentally
friendly. By 1850, cold-formed steel members were intro-
duced into prefabricated houses during the Gold Rush of
the mid-nineteenth century [5].

Furthermore, using web-based interfaces coupled with
Al tools makes the design process more accessible and
interactive and allows for real-time modification and opti-
mization [4]. Al and web-based technologies are used in
this study to select the optimum steel structure design for
solar energy systems. Using machine learning algorithms
and user-friendly interfaces [3]. A guide was introduced,
outlining simplified installations and best practices,
ensuring the safety and longevity of rooftop solar systems
[6]. The research conducted an assessment of ultraviolet
radiation’s effects on plant health, explored simulation
modeling for a feed pusher robot, analyzed the impact
of partial shading on photovoltaic systems, identified
infectious diseases in cattle facilities through theoretical
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studies, and examined the reliability of sectionalized elec-
trical networks [7]. A whole-life value approach was uti-
lized for sustainable material selection. A multi-criteria
decision support system augmented decision-making.
Bakhoum & Brown’s DSS framework facilitated mate-
rial evaluation and selection [8]. The effectiveness of two
SP support structure designs, the fixed and the adjustable,
was compared using Finite Element Analysis (FEA) [9].
The impact of wind loads on solar panel systems (SPS)
mounted on flat roofs was investigated through a wind
tunnel experiment [10]. FEA approaches were proposed
to detect structural deformations and misalignments due
to solar radiation, with self-weight and wind loads uti-
lized for calculations. The method has been validated
as reliable for PV system design. With the rise of pho-
tovoltaic solar panel (PVSP) technology, the design of
support systems has gained prominence. PVSPs are typi-
cally mounted on steel frames, often made of aluminum,
galvanized steel, painted steel, or stainless steel, and are
widely used in constructing solar energy systems within
structural engineering [11]. A comprehensive analysis
of AI applications in photovoltaic systems emphasized
efficiency and accuracy enhancements provided [12]. Al
was utilized to navigate the complexities of construction
projects, considering aspects like security, environment,
and time [13], 14, 15, 16. The significance of web-based
systems in enhancing structural design and collabora-
tive processes was underscored, centering on Integrated
Design Management for thorough project management.
As participant numbers grew, a cooperative, integrated
project management method became vital, presenting
challenges in executing cost management throughout the
design process [17]. The review of Al applications in con-
struction focused on activity monitoring, risk manage-
ment, and resource optimization alongside the successful
use of robotics and machine learning. Opportunities were
identified in data analytics for waste management and
BIM-based models for waste reduction. Challenges were
noted in Al construction applications, such as incomplete
data and complexities in planning, indicating the need for
further research and development [18]. Interest in uti-
lizing AT to improve solar energy steel structures was
increasing. Al and web-based interfaces were recognized
as key to advancing more efficient, economical, and sus-
tainable energy solutions. The use of Al in PV systems for
optimal power tracking, energy production forecasting,
and fault detection in modules or cells was increasingly
observed.

Artificial neural networks (ANNs) have successfully
selected steel structures. Two-dimensional steel frames can
be predicted economically and safely using ANNs [19].
Additionally, Applying deep neural networks combined with
Bayesian optimization has been demonstrated to achieve the
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best optimum structural weight for geometrically nonlinear
trusses while overcoming traditional computational mechan-
ics limitations [20]. Further, artificial neural networks offer
a fast and accurate way to forecast optimum results for vari-
ous structural designs using design parameters and objective
functions [21].

According to the literature, steel structures for solar
energy systems are increasingly being designed and imple-
mented using Al. Renewable energy solutions are becoming
more efficient, cost-effective, and sustainable due to artifi-
cial intelligence techniques and web-based interfaces. Using
ANN s to select optimum ground-mounted steel structure
system designs will greatly benefit structural engineering.
Steel structures for solar panels present several challenges
when the trend of utilizing sustainable solar energy in engi-
neering projects increases. This results in the wrong choice
of the appropriate steel structure system, increased cost,
and failure to maximize steel structures. Therefore, DSS is
needed. A web-based DSS is used in this study to facili-
tate the rapid selection of optimized designs using the ANN
model. The goal is to enhance the sustainability of solar
infrastructure, enhance energy production, reduce costs,
and demonstrate the transformative potential of Al in the
structural design of renewable Energy. The main objectives
of this paper include:

e Design steel structures for SP with various dimensions
to calculate weight and panel capacity.

e Utilize FEM simulations in STAAD Pro V8i SS6 to ana-
lyze load-bearing capacities, wind pressures, and mate-
rial stresses.

e Develop an ANN model in MATLAB to predict the opti-
mal structural configuration based on input variables
such as weight, area, and energy output.

e Create a web-based interface for designers and engineers
to evaluate energy needs and dimensions for optimal
design selection of SP.

e Develop a computerized DSS to select the optimal steel
structures for SP.

By addressing the challenges of structural optimization in
solar energy systems, this study provides a comprehensive
approach that enhances sustainability, energy efficiency, and
cost-effectiveness in solar infrastructure design.

Research methodology

This research uses ANNs and web-based interfaces to select
the optimal design of steel structures for solar energy sys-
tems. The methodology utilized in this study involves a com-
bination of FEM, ANNs, and DSS to analyze and predict
optimal structural configurations for solar panel installations,

as shown in Fig. 1. Three primary structural configurations,
system A (one-column), system B (two-column), and system
C (four-column) were selected based on their relevance to
various solar panel installation scenarios. Figure 1 presents
a flowchart that visually outlines the research process, and
the following subsection provides a detailed explanation of
each step.

Finite element method (FEM) modeling: creating
structural models and performing simulations

This section details the design loads, load combinations, and
the codes and standards applied to devise alternative PVSP
steel structural systems. The three main systems, classified
into 29 sub-systems with different dimensions and spans,
were utilized to simulate the solar system across fixed
heights and various spans to identify the optimum design
alternative.

FEA was conducted using STAAD Pro V8i SS6 to simu-
late the structural performance of each system, see Appendix
1. The simulations incorporated:

e Materials Definition: The materials used in this study
were chosen based on their availability and relevance to
steel structural systems for solar panels. Structural steel,
specifically St 52, was selected for its high yield strength
(fy =3.6 t/cm?) and reliability under varying load condi-
tions.

e Load Combinations: The analysis considered dead
loads (including solar panel weights and structural self-
weight), live loads (100 kg), and wind loads (calculated
based on wind pressures and suctions, with wind pressure
values of 38.5 kg/m for the mid-section and 19.25 kg/m
for the edge).

e Mesh Discretization: A mesh sensitivity analysis was
performed to determine the optimal mesh size. The
mesh comprised approximately 5000 elements, with finer
meshing applied to critical stress points such as column
connections and bracing joints.

e Load Distribution: The distributed loads were applied to
simulate real-world conditions, including varying solar
panel weights and wind pressures. Mid-section and edge
loads were calculated and used to ensure accurate stress
distribution.

Design criteria and load calculations
The materials, stresses, live loads, dead loads, and wind
loads are defined according to standards such as the Ameri-

can Institute of Steel Construction (AISC).

e Materials & Stresses:
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_[

FEM: Creating structural models and performing simulations

]_

*The FEM simulations are performed using STAAD Pro V8i SS6 to analyze the structural
performance of each system under specific loads, including dead loads, live loads, and wind
pressures.

* Materials and Load Combinations: The material properties of steel are defined with yield
strengths of 3.6 t/cm? and 5.2 t/cm? (St 52 steel). Load combinations account for the weight of
solar panels, live loads, and wind forces applied to the mid-section and edge.

*Mesh Sensitivity and Discretization: A mesh sensitivity analysis is conducted to ensure
accurate stress and load distribution within each system. Mesh refinement is applied to critical
points, such as column bases and bracing joints.

Data Collection from FEM Simulations

]_

* The output from the FEM simulations includes critical data on total weight, stress distribution,
displacement, and overall structural performance of each system configuration.

* These data points serve as input for developing the ANN model, enabling the prediction of the
optimal steel structure design based on various input parameters.

Development of ANN Model: Developing and training the ANN for prediction and optimization ]—

* An ANN model is developed in MATLAB to predict the optimal structural configuration
based on key input parameters, including the number of columns, span length, area, and
material properties.

*Inputs: Number of columns, span of each system (in meters), and area (in square meters).

*Outputs: The ANN predicts the total weight of the structure, the number of solar panels
required, and total energy production.

*The model is trained on a dataset of 29 sub-systems, with 70% of the data used for training,
15% for validation, and 15% for testing. The model achieved an R-value of 0.979, indicating
high accuracy.

Web-Based DSS: Building a web-based interface for real-time optimization

» A web-based DSS is developed to provide users (e.g., engineers, designers) with a tool to
input design criteria and retrieve optimized steel structure configurations. The DSS ranks the
design options based on energy output, cost, and structural weight.

*The DSS allows users to adjust parameters such as available area and required energy output
and provides real-time feedback on the most suitable system configurations.

_[

Optimization and Validation

*The results of the ANN model are validated by comparing the predicted values with actual
results from the FEM simulations. The high R-value demonstrates the model's effectiveness in
predicting optimal configurations.

*The DSS is tested through practical scenarios to ensure it provides accurate and valuable
recommendations for real-world solar panel installations.

Fig. 1 Research methodology

e Type of steel (e.g., St 52) with specific yield strengths
(fy=3.6 t/cm? and fy =5.2 t/cm?).

o Loads:
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e Live load: 100 kg.
e Dead load:

o SP weight: 23 kg.
e Distributed load (Mid): 23/2=11.5 kg/m.
e Distributed load (Edge): 23/4=5.75 kg/m.

° Wind load:
e Wind Pressure

C*Q*K=0.5%70*1.1=38.5 kg/m.
e Wind Pressure (Edge): C*Q*K/2=0.5%70%1.1/2

(Mid):

=19.25 kg/m.

¢ Wind Suction (Mid): C*Q*K=0.5%70%1.1=-38.
5 kg/m.

¢ Wind Suction (Edge): C*Q*K/2=0.5%70*%1.1/2=
-19.25 kg/m.

SP weight variations

The number of solar panels needed depends on the build-
ing’s energy use, the number of photovoltaic cells, the cell
technology, and the site’s sunlight exposure [22]. Table 1
compiles the average weight of solar panels by cell count,
along with other key measurements and dimensions for
quick reference [23].

Based on the data presented in the articles, the following
was calculated:

o Number of SPs:

e The area of a single SP was calculated from the data
provided.

e The area of each proposed system was calculated.

e The area of each system was divided by the area of
a single panel to determine the number of panels
required.

Table 1 A summary of SP measurements and dimensions [23]

Average measurements Residential ~ Commercial
Width (m) 1.0 1.0-1.1
Length (m) 1.7 1.6-1.8
Depth (m) 0.04-0.1 0.04-0.1
Solar cells (No.) 60 96

Solar cells size (m) 0.2%0.2 0.2%0.2
Area (m?) 1.6 1.6-2.4
Weight (kg) 18.1 18.1-24.9
Energy produced (W, range) 270-440 315-550+
Average of energy produced (W, range) 355 433

*It means (x) such as 0.2 x 0.2 (length x width)

e Total system energy:

e The average Energy produced by a single SP was
calculated from the data provided.

e The average Energy was multiplied by the number of
panels to determine the total system energy.

SP steel structure systems categories

System A (One column) In system A (one column), five dif-
ferent models were considered and divided into five distinct
areas (2*3, 3*4, 4*4, 4%6 and 5*6). Table 2 specifies details
regarding design elements such as columns, braces, rafters,
and purlins, as well as their details. Additionally, it shows
the weight per meter, the length, the weight per meter, and
the total weight per meter length for each model, in addition
to the weight per meter. Figures 2 show 3D models of the
structure systems created from STAAD Pro V8i SS6 soft-
ware.

System B (two-column) In system B (two columns), four
different models were considered and divided into four dif-
ferent spans (3,4,5 and 6 m), as shown in Fig. 3. Then, each
span was divided into areas, as shown in Table 3, which
specifies details regarding design elements such as columns,
braces, rafters, and purlins, as well as their details. Addi-
tionally, it shows the weight/meter, the length, and the total
weight per meter length for each model.

System C (Four-column) Four span models were designed
for the third system C and divided into three, four, five, and
six meters, as shown in Fig. 4. Each model was divided into
several different models based on their spatial configuration.
Table 4 states the details related to design elements, such
as columns, arches, rafters, and opposition, as well as their
details. In addition to the weight per meter, there is a weight
per meter and a weight per meter for each model, as well as
the weight per meter and the total weight per meter for each
model.

Results of FEM

Table 5 illustrates the energy generation required for each
design variant, factoring in the number of systems to be
energized. The summary table calculates the requisite num-
ber of solar cells for each design, derived from the stipulated
area of solar cells employed in the preliminary design.

The results of the FEM simulations showed a clear dis-
tinction between the three structural systems in terms of
energy production, structural weight, and cost-effective-
ness. System A (one-column) was found to be the lightest
but least energy-efficient, producing only 1083 W on aver-
age. This system is best suited for small-scale, low-cost
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Table 2 Details of System A (One Column)
ID Steel takeoff System A (One column)
SP (Dim) Section Items Profile (mm) W/L (kg/m) Length (m) Weight (kg)
Al 2mx3m Secl Columns Pipe 89 x 5 10.34 3 31.01
Sec2 Purlins & Bracings 60 x 40 x 2.6RHS 3.81 23 87.56
Sec3 Rafters 90 x 50 x 4RHS 8.15 2 16.29
Total Weight (kg) 134.86
Weight per meter (kg) 22.48
A2 3mX4m Secl Columns Pipe 89 x 7 14.13 3 42.38
Sec2 Bracings 60x40 x 2.6RHS 3.81 31 118.02
Sec3 Rafters 90 x 50 x 4RHS 8.15 4 32.59
Sec4 Purlins 50%30 x 2.6RHS 3.00 15 44.98
Total Weight (kg) 237.96
Weight per meter (kg) 19.83
A3 4mXx4m Secl Columns Pipe 108 X 6 15.06 3 45.18
Sec2 Rafters 60x40 x 2.6RHS 3.81 30.63 116.60
Sec3 Main Girder 90 x 50 x 4RHS 8.15 4 32.59
Sec4 Purlins 5030 x 2.6RHS 2.99 20 59.85
Sec5 Bracings 60x30 x 2.6RHS 5.63 4 22.53
Total Weight (kg) 276.75
Weight per meter (kg) 17.30
A4 4mx6m Secl Columns Pipe 133 x 6 18.75 3 56.26
Sec2 Rafters 120x 60 x SRHS 13.08 5 65.41
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 44.84 296.49
Sec4 Purlins 5030 x 2.6RHS 2.99 28 83.79
Total Weight (kg) 501.94
Weight per meter (kg) 20.91
AS SmX6m Secl Columns Pipe 133 x 6 18.75 3 56.26
Sec2 Rafters 140 80 x 4RHS 13.16 11 144.76
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 43.24 285.88
Sec4 Purlins 60x40 x 2.6RHS 3.81 35 133.25
Total Weight (kg) 620.15
Weight per meter (kg) 20.67

installations where weight is a significant concern. Sys-
tem B (two-column) offered a balance between weight
and energy efficiency. With an average energy production
of 4330 W, this system was suitable for mid-sized instal-
lations. The cost per watt was lower than System A but
higher than System C. System C (four-column), while
the heaviest, produced the highest energy output of up
to 11,547 W. Despite its higher initial cost, this system
proved to be the most cost-effective in terms of long-term
energy production. It is recommended for large-scale com-
mercial installations with high space and energy demands.

A cost analysis was performed, comparing the initial
investment of each system to the energy produced. System
A had the lowest initial cost but the highest cost per watt
of energy produced. Despite having a higher initial cost
due to its weight, System C had the lowest cost per watt
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over time, making it the most economical option for high-
energy installations.

According to the data analysis in Table 5, several key
insights can be drawn regarding the performance of differ-
ent steel structural systems for solar panels. The findings
focus on each system configuration’s energy production,
structural weight, and area utilization.

o System C (Four-Column):

e System C consistently produced the highest energy
output compared to its structural weight. For
example, in the 6 m X 8 m configuration, System
C generated 11,547 W of energy while weighing
1142.8 kg. This corresponds to an energy output
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Fig.2 Example of (4 m*4 m /4 m*6 m) of 2D and 3D of one column system

of approximately 10.1 W per kilogram, the highest
among all systems.

System C is particularly suited for large-scale com-
mercial installations where maximizing energy out-
put is critical and weight is less of a constraint. Its
larger area capacity allows for more solar panels,
increasing energy production.

o System A (One-Column):

System A had the lightest overall weight across all
configurations but produced lower energy than Sys-
tem B and C. For instance, the 2 m X 3 m configura-
tion of System A weighed 134.86 kg and generated
1083 W, yielding an energy output of 8.03 W per
kilogram. This system is optimal for smaller, low-
cost installations where weight reduction is a priority
over energy output.

Due to its lighter weight, System A is more suitable
for small-scale residential installations where struc-
tural weight limitations are important, but the energy
demand is not as high.

e System B (Two-Column):

System B offers a good balance between weight
and energy output, making it suitable for mid-sized

installations. In the 4 m X 6 m configuration, Sys-
tem B produced 4330 W of energy while weighing
390.74 kg, resulting in an energy output of approxi-
mately 11.08 W per kilogram. This system pro-
vides a compromise between the lightweight design
of System A and the high energy output of System
C.

System B is optimal for installations where a bal-
ance between structural weight and energy output
is desired, making it a versatile option for various
applications.

Weight-to-Energy Ratio Comparison:

System C (Four-Column) had the highest energy
output relative to weight, making it the most effi-
cient energy production per kilogram of structure.
System A (One-Column) had the lowest energy-to-
weight ratio but remains the best choice for instal-
lations where reducing the overall structural weight
is a priority.

System B (Two-Column) balanced weight and
energy output, making it a versatile option for mid-
sized installations.

@ Springer
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Fig. 3. 2D and 3D examples of
3 m/4 m span of two-column
system details
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Development of ANN Model: developing
and training the ANN for prediction
and optimization

The database obtained from the structural analysis is used
to train the ANN model. Based on the input parameters, an
ANN model was developed to predict structural systems,
total energy production, the number of solar panels, and
total weight, as shown in Table 6.

The steps for developing the ANN’s model for this
study are as follows:

The architecture of the ANN model was implemented
using MathWorks® MATLAB® software, as shown in
Fig. 5, with the following steps, as shown in Fig. 6:

The inputs: The inputs are identified as the main vari-
ables affecting the outputs of these neural networks. These
inputs are as follows:

@ Springer

e Input I (X,): No of Columns (ranging from 1 to 4 col-
umns depending on the system).

e Input 2 (X,): Span of each sub-system (29) in meters
0,3,4,5,6.3,4,5,6 m).

e Input 3 (X;): Area in square meters (6—64 m?).

There are constants, such as fixed height=3 m, average
production energy of solar panel =433 watts, and area of
solar panel = 2.4 m?).

The outputs: The outputs that represent the required
target to be determined by the artificial.

neural networks are as follows:

e Output 1 (Y,): Weight of each sub-system in kg.
e Output 2 (Y,): Number of solar systems of each sub-
system.
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Table 3 Details of System B (Two Columns)

ID Steel takeoff System B (Two columns)
Span  SP (Dim) section  Items Profile (mm) W/L (kg/m) Length (m) Weight (kg)
Bl Bll 3m 2mXx4m Secl Columns Pipe 60 X 5 6.77 6 40.605
Sec2 Purlins 60 x40 x 3.2RHS 431 11.21 48.363
Sec3 Rafters & Bracings 90 x 50 X 4RHS 7.94 11.5 91.334
Total Weight (kg) 180.30
Weight per meter (kg) 22.54
B1.2 4mx4m Secl Columns Pipe 89 x 4 8.37 6 50.203
Sec2 Purlins 60 x40 x 3.2RHS  4.61 20 92.121
Sec3 Rafters & Bracings 90 x 50 x 4RHS 8.15 2242 182.667
Total Weight (kg) 324.99
Weight per meter (kg) 20.31
B1.3 4mx6m Secl Columns Pipe 89 X 6 12.26 6 73.533
Sec2 Purlins 60 x 40 x 4RHS 5.63 30 168.966
Sec3 Rafters & Bracings 90 x 50 X 3.2RHS 6.61 22.42 148.242
Total Weight (kg) 390.74
Weight per meter (kg) 16.28
B2 B21 4m 4mXxX4m Secl Columns Pipe 60 X 5 8.37 6 50.20
Sec2 Purlins 80 x 40 x 3.2RHS 5.61 20 112.17
Sec3 Rafters & Bracings 90 x 50 x 3.2RHS 6.61 25.89 171.16
Total Weight (kg) 333.54
Weight per meter (kg) 20.85
B2.2 4mx6m Secl Columns Pipe 89 X 6 12.26 6 73.53
Sec2 Purlins 90 x 50 x 3.2RHS 6.61 30 198.34
Sec3 Rafs & Bracings 100 x 60 x 3.2RHS  7.61 25.89 197.12
Total Weight (kg) 468.99
Weight per meter (kg) 19.54
B2.3 6mx6m Secl Columns Pipe 108 X 6 15.06 6 90.37
Sec2 Purlins 90 x 50 x 3.2RHS 6.61 26 171.90
Sec3 Rafs&Bracings 120 x 60 x 4RHS 10.65 34.83 371.09
Total Weight (kg) 633.35
Weight per meter (kg) 17.59
B3 B31 5m 4mx6m Secl Columns Pipe 87 x 7 14.13 6 84.76
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 30 114.21
Sec3 Bracings 80 x 40 x 3.2RHS 5.61 34.61 194.13
Sec4 Raftars 90 x 50 x 3.2RHS 6.61 8 52.89
Total Weight (kg) 445.99
Weight per meter (kg) 18.58
B3.2 6mx6m Secl Columns Pipe 108 x 7 17.40 6 104.39
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 42 159.90
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 42.24 279.27
Sec4 Raftars 120 x 60 x 4RHS 10.65 12 127.84
Total Weight (kg) 671.40
Weight per meter (kg) 18.65
B3.3 6mx8m Secl Columns Pipe 108 x 8 19.69 6 118.13
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 56 213.19
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 42.24 279.27
Sec4 Raftars 120 x 80 x 4RHS 11.91 12 142.88
Total Weight (kg) 803.47
Weight per meter (kg) 16.74
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Table 3 (continued)
ID Steel takeoff System B (Two columns)
Span  SP (Dim) section  Items Profile (mm) W/L (kg/m) Length (m) Weight (kg)
B41 6m 6mx6m Secl Columns Pipe 108 x 7 17.40 6 104.39
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 42 159.90
Sec3 Bracings 100 x 60 x 3.2RHS  7.61 45.94 349.80
Sec4 Raftars 120 x 60 x 4RHS 10.65 12 127.84
Total Weight (kg) 741.93
Weight per meter (kg) 20.61
B4.2 6mx8m Secl Columns Pipe 133 X 6 18.75 6 112.51
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 58 220.81
Sec3 Bracings 100 x 60 x 3.2RHS  7.61 39.94 304.11
Sec4 Raftars 120 x 80 x 4RHS 11.91 18 214.32
Total Weight (kg) 851.76
Weight per meter (kg) 17.74
s B4.3 8mx8m Secl Columns Pipe 133 x 8 24.61 6 147.66
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 72 274.15
Sec3 Bracings 120 x 80 x 4RHS 11.91 54 642.96
Sec4 Raftars 150 x 100 x 4RHS  15.04 16 240.64
Total Weight (kg) 1305.41
Weight per meter (kg) 20.40

e Output 3 (Y5): Total production energy of each sub-sys-
tem in watts.

Training and Validation: The model was trained on
the data and validated to ensure accurate predictions; the
model uses 70% for training, 15% for validation, and 15%
for testing.

R-values (correlation coefficients) are statistical measures
that describe “the strength and direction of a linear relation-
ship between two variables” [24]. In regression analysis, the
R-value (often represented as R or R?) provides insights into
how well the independent variable (s) predict the dependent
variable [25]. “Regression R-values quantify the correlation
between the actual and predicted values of the dependent
variable. The strength of the relationship” [26-28]:

“0-0.3: Weak correlation.
0.3-0.5: Moderate correlation.
0.5-0.7: Strong correlation.
0.7-1.0: Very strong correlation”.

In this study, the fit is quite good across all data sets, with
R-values of 0.979 for steel structure systems of solar energy,
as shown in Fig. 7. These R-values indicate:

@ Springer

e R-value (0.979) is close to 1, suggesting a strong positive
correlation between the actual and predicted values of the
dependent variable.

e This suggests that the regression model can accurately
predict the dependent variable using the independent
variables and that the model fits the data well.

e The high R-value demonstrates that the independent vari-
ables account for a significant portion of the variance in
the dependent variable.

e The R-value suggests that the models effectively capture
the underlying patterns in the data for structural systems.

The error histograms for structure systems of solar
Energy indicate the distribution of prediction errors made
by the ANN model. The histograms help understand the
model’s accuracy and areas where predictions may deviate
from actual values, as shown in Fig. 8. Steel structure sys-
tems: The error histogram shows that most prediction errors
are centered around zero, indicating good model accuracy.

The higher errors seen in Fig. 8, particularly at — 148.1
and 170.8, are due to several factors related to the input
data’s complexity and the ANN model’s inherent limitations
in predicting specific structural configurations. These errors
may be caused by:
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Fig.4. 2D and 3D examples of
a 3 m span of 4-column system
details
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e Specific structural configurations, especially those with
extreme span or area values, may deviate significantly
from the average patterns observed in the data. These
outliers can lead to higher prediction errors, as the ANN
model is more likely to struggle with configurations far
from the training data’s typical range.

e For some configurations, particularly those with larger
spans or more complex load distributions (e.g., System
C with four columns), the FEM simulations may pro-
duce results that are harder to predict accurately using
the ANN model. This complexity can introduce higher
prediction errors for these configurations.

e Errors can also arise from mesh sensitivity in the FEM
model. In some areas of the structure, particularly around
joints or where stress concentrations occur, even small
variations in mesh density can lead to differences in
stress and deformation predictions, contributing to higher
error values.

High R-value enhances the confidence in the model’s
predictions, making it a valuable tool for practical applica-
tions such as structural analysis and design optimization.
Engineers and decision-makers can use these models to
make informed decisions about structure systems of solar
energy design, maintenance, and performance evaluation,
relying on the robustness of the high R-values. While high
R-values are desirable, assessing other aspects of model
performance, such as residual analysis and potential over-
fitting, is important to ensure the model’s generalizability.
R-values are crucial indicators of the strength and direc-
tion of the relationship between variables in regression
analysis (Fig. 9).

The ANN model plays a critical role in optimizing the
design of steel structures for solar panel installations.
Based on the data collected from 29 sub-systems, the ANN
was trained to predict three essential outputs:

@ Springer
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Table 4 Details of System C (Four Columns)
ID Steel Takeoff System C (Four columns)
Span  SP (Dim) Section  Items Profile (mm) W/L (kg/m) Length (m)  Weight (kg)
Cl Cl1 3m 2mx4m Secl Columns Pipe 60 X 5 7.09 12 85.05
Sec2 Purlins 50 x 30 x 2.6RHS 2.99 12 35.91
Sec3 Rafs&Bracings 60 x 40 x 2.6RHS 3.81 22 83.76
Total Weight (kg) 204.71
Weight per meter (kg) 25.59
Cl.2 4mx4m Secl Columns Pipe 76 x 4 7.09 12 85.05
Sec2 Purlins 50 x 30 x 2.6RHS 2.99 20 59.85
Sec3 Bracings 60 x 40 x 2.6RHS 3.81 30 114.21
Sec4 Rafters 90 x 50 x 4RHS 2.99 14 41.89
Total Weight (kg) 301.00
Weight per meter (kg) 18.81
Cl1.3 4mXx6m Secl Columns Pipe 76 x 4 7.09 12 85.05
Sec2 Purlins 50 % 30 x 2.6RHS 2.99 28 83.79
Sec3 Bracings 60 x 40 x 2.6RHS 3.81 42 159.90
Sec4 Rafters 80 x 40 x 3.2RHS 5.61 12 67.31
Total Weight (kg) 396.04
Weight per meter (kg) 16.50
C2 C21 4m 4mx4m Secl Columns Pipe 76 x 4 7.09 12 85.05
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 20 76.14
Sec3 Bracings 60 x 40 x 3.2RHS 4.61 34.63 159.50
Sec4 Rafters 80 x 40 x 3.2RHS 5.61 8 44.87
Total Weight (kg) 365.56
Weight per meter (kg) 22.85
C2.2 4mXx6m Secl Columns Pipe 76 x 4 7.09 12 85.05
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 30 114.21
Sec3 Bracings 60 x 40 x 3.2RHS 4.61 34.63 159.50
Sec4 Rafters 90 x 50 x 3.2RHS 6.62 8 52.98
Total Weight (kg) 411.74
Weight per meter (kg) 17.16
Cc2.3 6mx6m’ Secl Columns Pipe 76 X 5 8.74 12 104.84
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 42 159.90
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 46.84 309.71
Sec4 Rafters 100 x 60 x 3.2RHS ~ 7.61 12 91.37
Total Weight (kg) 665.80
Weight per meter (kg) 18.49
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Table 4 (continued)

ID Steel Takeoff System C (Four columns)
Span  SP (Dim) Section  Items Profile (mm) W/L (kg/m) Length (m)  Weight (kg)
C3 C31 5m 4mx6m Secl Columns Pipe 76 x 4 7.09 12 85.05
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 25 95.18
Sec3 Rafs&Bracings 80 x 40 x 3.2RHS 5.61 52.61 295.09
Total Weight (kg) 475.31
Weight per meter (kg) 19.80
C3.2 6m X 6m Secl Columns Pipe 89 x 5 10.34 12 124.03
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 36 137.05
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 52.24 345.38
Sec4 Rafters 100 x 60 x 3.2RHS  7.61 12.5 95.18
Total Weight (kg) 701.64
Weight per meter (kg) 19.49
C3.3 6m X 8 m Secl Columns Pipe 89 x 5 10.34 12 124.03
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 48 182.74
Sec3 Bracings 90 x 50 x 3.2RHS 6.61 67.05 443.27
Sec4 Rafters 100 x 60 x 4RHS 7.61 16.5 125.63
Total Weight (kg) 875.67
Weight per meter (kg) 18.24
C4 C41 6m 6mx6m Secl Columns Pipe 89 x 5 10.34 12 124.03
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 42 159.90
Sec3 Rafs&Bracings 100 X 60 X 3.2RHS  7.61 69.94 532.53
Total Weight (kg) 816.46
Weight per meter (kg) 22.68
C4.2 6mXx8m Secl Columns Pipe 89 x 6 12.26 12 147.07
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 56 213.19
Sec3 Bracings 100 x 60 x 3.2RHS  7.61 57.94 441.17
Sec4 Rafters 100 x 60 x 4RHS 12.26 12 147.07
Total Weight (kg) 948.49
Weight per meter (kg) 19.76
C4.3 8m X 8m Secl Columns Pipe 108 X 5 12.67 12 152.09
Sec2 Purlins 60 x 40 x 2.6RHS 3.81 72 274.11
Sec3 Bracings 100 x 60 x 3.2RHS  7.61 74.36 566.21
Sec4 Rafters 100 x 60 x 4RHS 9.40 16 150.40
Total Weight (kg) 1142.80
Weight per meter (kg) 17.86

e Total Weight of the Structure: The weight is a crucial
factor in determining the cost and material usage for

different configurations.

e Number of Solar Panels: This determines the total area
covered by solar panels and the energy they can gener-

ate.

e Total Energy Production: The predicted energy output

measures the system’s efficiency.

The model achieved high accuracy, with an R-value of
0.979, indicating a very strong correlation between the
actual and predicted values for all three outputs. This means
the ANN can be relied upon to provide optimal configura-
tions for different solar energy needs, making it a valuable
tool for engineers and designers.

Furthermore, the ANN model is significant because it
automates a complex process that would otherwise require
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Table 6 Input and output for the ANNs model

No.of Span (m) Area (m?) Weight No. of SP  Total
Col- (Kg) Energy
umns Production
(watt)

1 0 6 134.86 3 1083

1 0 12 237.87 5 2165

1 0 16 276.75 7 2887

1 0 24 501.94 10 4330

1 0 30 620.15 13 5413

2 3 8 180.3 3 1443

2 3 16 313.48 7 2887

2 3 24 390.74 10 4330

2 4 16 333.54 7 2887

2 4 24 468.99 10 4330

2 4 36 633.35 15 6495

2 5 24 445.99 10 4330

2 5 36 671.4 15 6495

2 5 48 803.47 20 8660

2 6 36 741.92 15 6495

2 6 48 821.3 20 8660
2 6 64 1305.41 27 11,547
4 3 8 204.71 3 1443

4 3 16 301 7 2887

4 3 24 396.21 10 4330
4 4 16 365.73 7 2887

4 4 24 411.74 10 4330
4 4 36 665.8 15 6495

4 5 24 475.31 10 4330
4 5 36 701.64 15 6495

4 5 48 875.67 20 8660
4 6 36 816.46 15 6495

4 6 48 948.49 20 8660
4 6 64 1142.8 27 11,547

extensive manual simulation and analysis. By reducing the
time and effort needed for design optimization, the ANN
model enhances efficiency, reduces costs, and ensures that
solar energy systems are structurally sound and efficient.

Fig.5 Architecture of ANN
model for solar panel structure
systems

i1 to 3)

Span (m)

Area (m?)

Input Layer

Web-based decision support system (DSS)

The Web-Based DSS was developed to provide engineers,
architects, and decision-makers with an efficient tool for
optimizing solar energy production and the structural design
of solar panel support systems. The DSS is designed to sim-
plify the complex process of selecting the most suitable
structural configuration by allowing users to input key pro-
ject parameters, such as available area and required energy
output, and receive tailored recommendations for the best
design options. The primary benefits of the DSS include:

e Users can quickly obtain optimized design solutions
without manually conducting numerous FEM simula-
tions or trial-and-error calculations.

e The DSS ranks different structural systems (e.g., one-
column, two-column, and four-column designs) based on
energy efficiency, structural weight, and area utilization,
helping users select the most cost-effective and energy-
efficient solution for their specific project.

e The system is highly flexible, allowing users to adjust
input parameters to match specific project needs, whether
for residential installations or large commercial projects.

Optimal solar energy production is achieved by designing
efficient structures, evaluating all alternatives, and using a
web application that guides users to the best energy solu-
tions, as shown in Fig. 10.

The system presented the best alternatives, sorted from
the smallest/lowest to the largest/highest area by default.
Using the energy or weight sorting buttons instead of the
column sort on the table in Fig. 11 will apply the sort to all
the available alternatives, not only the selected number of
alternatives. This can help users quickly identify the best
options instead of manually sorting them individually. Fur-
thermore, it can also help to save time when sorting large
amounts of data.

e Iststep: Area required: Indicates the available floor area
(m?).

Weight (Kg)

No. of SP

Total Energy
Production
(watt)

Output Layer

Hidden Layer
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#) Import_Data_Al_Solar_Energy.m
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3 %% Import the data - AL INDOT Historic Bridges Information
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5 raw = raw(2:end,:);
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7
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%% Exclude rows with blank cells
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*)),raw),2); % Find row with blank cells

10 raw(I,:) = [1;
1
12 %% Create output variable
13 data = reshape([raw{:}],size(raw));
14
15 %% Create table
16 AlSolarEnergy = table;
17
18 %% Allocate imported array to column variable names
19
20
21 AlsolarEnergy.X3 = data(:,3);
22 AlISolarEnergy.Yl = data(:,4);
23 ATsolarEnergy.v2 = data(:,5);
24 ATsolarEnergy.V3 = data(:,6);
Details v 25
26 X = AIsolarEnergy{:,1:3};
27 Y = ATSolarEnergy{:,4:6};
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Step 1. Create the code for importing the data
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Step 2. Select Neural Net Fitting

Fig.6 Steps of the ANN in the MathWorks® MATLAB® software
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X: double array of 29 observations with 3 features.
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Step 3. Import the data and Select the data for training the network (X&Y)
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Train a neural network with the Levenberg-Marquardt algorithm (fast) Summary

Two-layer feedforward network with sigmoid hidden neurons and neural network to map predictors to continuous responses.

Train a neural network with the Bayesian reg algorithm (slow, generalizes well)
ors: X - [29x3 double]

Train with Scaled Conjugate Gradient nses: Y - [29x3 double]
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Step 4. Select the training data 70%, validation data 15%, test data 15%, and layer size 40% - then
Train with Levenberg-Marquardt

Fig.6 (continued)
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Fig.7 R-Value for the data

Fig. 8 Error Histogram for the
data
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% Dimensions
Q = size(x1,1); % samples

% Input 1
x1 = x1';
xpl = mapminmax_apply(x1,x1_stepl);

% Layer 1
al = tansig_apply(repmat(b1,1,Q) + IW1l_1*xpl);

% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*al;

% Output 1
yl = mapminmax_reverse(a2,yl_stepl);
yl = yl';

end
% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings)

y = bsxfun(@minus,x,settings.xoffset);

y = bsxfun(@times,y,settings.gain);

y = bsxfun(@plus,y,settings.ymin);

end

% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n,~)
a=2./(1+ exp(-2*n)) - 1;

end

% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings)

x = bsxfun(@minus,y,settings.ymin);

x = bsxfun(@rdivide,x,settings.gain);

x = bsxfun(@plus,x,settings.xoffset);

end

Fig.9 The final results of the ANN model (Simulation and Module
Functions)

C % alielbagithubio/dss/

e 2nd step: Energy amount required: Specify the power
required (in Watts).

e 3rd step: Number of alternatives: The default is three, but
the user may select any number (more or less than 3).

e 4th step: Name, IDs, and physical dimensions of the
model.

e 5th step: A weight per unit

e 6th step: Number of SPs required and the amount of solar
energy output

e 7th step: Numbers of structure systems and total area
column; it can be sorted as ascending or descending.

e 8th step: Total energy column; it can be sorted as ascend-
ing or descending

e Oth step: Areas equal to or smaller than the required area
but none larger. Energy was displayed equal to or higher
than the required amount, but none was less.

The DSS was designed to allow users to input specific
criteria, such as available area and required energy output,
and receive recommendations for optimal structural con-
figurations. The DSS ranked the available configurations
based on energy output, weight, and cost, providing users
with a clear decision-making tool. For a practical scenario
(for example), A user with an area of 50m2 and a required
energy output of 10 kW would be presented with the most
suitable structural options, ranging from a two-column to a
four-column system. The DSS would recommend System
C as the optimal choice due to its ability to meet energy
demands while minimizing long-term costs.

\ \
\
Decision Support System

Selecting the Optimum Structure System

of Solar Energy based on Value Engineering Concept

Fig. 10 DSS web application home page

Eng. Hadeel Elba

@ Springer



20 Page 20 of 22

Innovative Infrastructure Solutions (2025) 10:20

Decision Support System

Selecting the Optimum Structure System
of Solar Energy based on Value Engineering Concept

Eng. Hadeel Elba

Find Best Alternatives

Sort by Highest Energy

Sort by Less Weight

t only the
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Remaining Extra
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Fig. 11 DSS web application (Input & Output)

Example Scenario of DSS Interaction:

Let’s consider a scenario where an engineer is tasked with
designing a solar panel installation for a commercial rooftop.
The engineer knows that the available roof area is 100m2,
and the energy requirement for the building is 12 kW.

¢ Inputting Data into the DSS: The engineer enters the fol-
lowing parameters into the DSS:

Available Area: 100 m?.

Required Energy Output: 12 kW (12,000 W).

e Receiving Optimized Solutions: Based on the entered
data, the DSS processes this information and evaluates
several possible structural configurations (e.g., one-
column, two-column, or four-column systems). It uses
pre-trained ANN models and FEM data to predict the
energy output, structural weight, and area utilization for
each system.

e DSS Output: The DSS gives the engineer a ranked list of
optimized configurations.

Option 1: Four-Column System (System C), which
maximizes energy output (13 kW) and utilizes 90% of the
available area, with a total structural weight of 1100 kg.

Option 2: Two-Column System (System B), which pro-
vides 11 kW of energy output, uses 85% of the available
area, and weighs 750 kg.

Option 3: One-Column System (System A), which
produces 9 kW of energy, utilizes 80% of the area, and
weighs 550 kg.

e Decision-Making: The engineer can compare the options
and select the most appropriate system that balances
energy output, structural weight, and area utilization
based on the results. For example, if maximizing energy

@ Springer

output is the priority, the engineer may select Option 1
(Four-Column System), while a weight-constrained pro-
ject may lead to selecting Option 3 (One-Column Sys-
tem).

The current version of the DSS is designed to display
only structural configurations that meet or exceed the user’s
specified energy output. This may limit its usefulness for
projects where lower energy outputs are acceptable. In future
versions, we aim to provide users with a broader range of
options, including configurations that may produce slightly
lower energy but offer other advantages, such as reduced
weight or cost savings. The DSS currently focuses on limited
input parameters (area, energy output, and structural config-
urations). In real-world projects, other factors such as wind
loads, environmental conditions, and specific material costs
may influence the optimal design. Future improvements to
the DSS will involve incorporating these additional factors
for more comprehensive optimization. In future versions,
the DSS could integrate material costs to provide a more
detailed cost-efficiency analysis, helping users make more
informed financial decisions alongside structural and energy
considerations.

Conclusion and future works

The research methodology outlined here provides a clear
and structured approach to exploring the potential of Al
and web-based interfaces in enhancing the design of steel
structures for solar energy systems. The combination of
data-driven Al models and interactive web interfaces holds
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the promise of revolutionizing the field of structural design
for renewable energy infrastructure.

This study explores a flexible ANNs model that uses the
capabilities of STAAD Pro V8i SS6 software and Math-
Works® MATLAB® software for decision-making that
can select an optimal structure system for solar energy
systems on multiple criteria (such as area, various spans,
fixed height, and solar panel fixed area) that may change
independently and using weight optimization techniques.
The optimization was performed using an ANN model to
select the optimum steel structures for solar energy sys-
tems and forecast the total weight systems based on input
parameters such as base area, span, and fixed height.

e This research has focused on two transmission line
tower systems, self-supported suspension, and self-
supported tension towers, which are prevalent world-
wide.

e The study also suggests how to develop the FEM model
that uses the capabilities of STAAD Pro software and
Excel for analysis for optimization that enables decision-
makers to use this database to select the optimal steel
structure systems for solar Energy in keeping with the
criteria established for that system.

e The model can choose an optimal solar energy system
using a web-based interface. The web-based interface
facilitates real-time design adjustments and user inter-
action, facilitating optimization. This study shows that
FEM-ANN are very effective tools for determining the
optimal bracing system and section for the steel struc-
ture. The absence of a commercial software package for
determining optimal bracing systems is noted. A software
program of this type can be developed further.

Moreover, a web-based interface adds a layer of user
interaction, allowing real-time design adjustments based
on specific project needs. This interface facilitates selecting
the best solar energy system by enabling users to input and
modify parameters, receive instant feedback, and explore
various design alternatives. The combination of the FEM
and ANN models in this web-based environment ensures
that decision-makers can optimize designs dynamically and
make informed choices based on real-time data.

A key observation from this research is the lack of com-
mercial software for optimizing steel structure bracing sys-
tems in solar energy applications. The study demonstrates
that the combination of FEM and ANN is a highly effective
tool for determining the optimal bracing system and struc-
tural sections. The absence of readily available commercial
software for this purpose suggests a gap in the market that
could be addressed through further development of special-
ized tools. A software package that integrates these opti-
mization capabilities would greatly benefit engineers and

designers working in renewable energy infrastructure by
streamlining the design process and improving outcomes.

This study highlights the practical applications of inte-
grating Al-driven ANN models with FEM analysis to
enhance the optimization of steel structures for solar energy
systems. The proposed methodology optimizes design effi-
ciency and promotes sustainability by minimizing mate-
rial usage and optimizing energy production. Developing
a web-based interface enhances real-time optimization and
decision-making, providing that the design of solar energy
systems is adaptable to evolving project requirements. The
results highlight the necessity of creating specialized soft-
ware to enhance bracing systems, indicating opportunities
for innovation in renewable energy infrastructure.
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